Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ (x-2)+(x-4)+(x-6)+...+(x-100) chia hết 25
Chứng tỏ ( x-1)+(x-3)+(x-5)+...+(x-99) chia hết 50
\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)
\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)
\(a,S=3+3^2+3^3+...+3^{20}\)
Ta thấy:\(3+3^2=12⋮12\)
\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)
\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)
\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)
(3+32+33)+(34+35+36)+...+(32005+32006+32007)
=3(1+3+32)34(1+3+32)+...+32005(1+3+32)
=3.13+3^4.13+...+3^2005.13
=13(3+34+...+32005)
tick mk nha
a) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{97}.31\)
\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
b) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)
\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)
\(=5+5.30+5^3.30+...+5^{97}.30\)
\(=5+30.\left(5+5^3+...+5^{97}\right)\)
Mà \(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)
c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)
\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)
\(4S=5^{100}-5\)
\(\Rightarrow25^x-5=5^{100}-5\)
\(\Rightarrow25^x=5^{100}\)
\(\Rightarrow25^x=25^{50}\)
\(\Rightarrow x=50\)
S = 5 + 52 + 53 + 54 + .......... + 599
a) S = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 597 + 598 + 599 )
= 5. ( 1 + 5 + 52 ) + 54 . ( 1 + 5 + 52 ) + .... + 597 . ( 1 + 5 + 52 )
= ( 1 + 5 + 52 ). ( 5 + 54 + .. + 597 )
= 31 . ( 5 + 54 + .... + 597 ) chia hết cho 31 ( đpcm )
c ) 5S = 52 + 53 + .. + 5100
=> 5S - S = 4S = 5100 + 599 + ........ + 53 + 52 - 5 - 52 - 53 - ..... - 599
= 5100 - 5
25x - 5 = 4S
=> 25x - 5 = 5100 - 5
=> 25x = 5100
=> 25x = ( 52 )50
=> 25x = 2550
=> x = 50
Vậy x = 50
Câu b quên cách làm rồi
a) S=5+52+53+54+...+599
=(5+52+53)+(54+55+56)+...+(597+598+599)
=5(1+5+52)+54(1+5+52)+...+597(1+5+52)
=5.31+54.31+...+597.31
=31(5+54+...+597)⋮31(đpcm)
b) S=5+52+53+54+...+599
=5+(52+53)+(54+55)+...+(598+599)
=5+5(5+52)+53(5+52)+...+597(5+52)
=5+5.30+53.30+...+597.30
=5+30.(5+53+...+597)
Mà 5⋮̸30 nên S⋮̸30(đpcm)
c) Ta có: 5S=52+53+54+55+...+5100
5S−S=(52+53+54+55+...+5100)−(5+52+53+54+...+599)
4S=5100−5
⇒25x−5=5100−5
⇒25x=5100
⇒25x=2550
⇒x=50
bai 1 :x la so chan (chia het cho 2)
x la so le (khong chia het cho 2
bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5
bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11
1.
S = 1 + 3 + 32 + 33 + ... + 399
S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 398 + 399 )
S = 4 + 32 . ( 1 + 3 ) + ... + 398 . ( 1 + 3 )
S = 4 + 32 . 4 + ... + 398 . 4
S = 4 . ( 1 + 32 + ... + 398 ) \(⋮\)4
2.
a) 2x + 7 \(⋮\)x + 2
2x + 4 + 3 \(⋮\)x + 2
Mà 2x + 4 \(⋮\)x + 2
\(\Rightarrow\)3 \(⋮\)x + 2
\(\Rightarrow\)x + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
\(\Rightarrow\)x \(\in\){ -1 ; -3 ; 1 ; -5 }
b) tương tự
S = (x - 1) + (x - 3) + (x - 5) +...+ (x - 99)
S = (x + x + x +...+ x) - (1 + 3 + 5 +...+ 99)
Tổng 1 Tổng 2
Số số hạng của tổng 2 cũng như tổng 1 là:
(99 - 1) : 2 + 1 = 50 (số)
Ta có:
S = 50x + (99 + 1).50 : 2
S = 50x + 100.50 : 2
S = 50x + 2500
S = 50(x + 50) chia hết cho 50