K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

Bài 1:vì 15 chia hết cho 5 suy ra 2022.15 chia hết cho 5

         vì 25 chia hết cho 5 suy ra 2022.15 + 25 chia hết cho 5

 

25 tháng 1 2016

S = (x - 1) + (x - 3) + (x - 5) +...+ (x - 99)

S = (x +  x + x +...+ x) - (1 + ​3 + 5 +...+ 99)

         Tổng 1                     Tổng 2

Số số hạng của tổng 2 cũng như tổng 1 là:

(99 - 1) : 2 + 1 = 50 (số)

Ta có:

S = 50x + (99 + 1).50 : 2 

S = 50x + 100.50 : 2

S = 50x + 2500

S = 50(x + 50) chia hết cho 50

4 tháng 12 2017

1) 2 + 22 + 23 + 24 + 25 +...+ 2100

= (  2 + 22 + 23 + 24 ) +....+ ( 296 + 297 + 298 + 299 + 2100)

= 2. ( 1 + 2 + 4 + 8) +...+ 296. ( 1 + 2 + 4 + 8)

= 2. 15 +...+ 296.15

= 15. ( 2+...+ 296) chia hết cho 15

=> Vậy tổng trên chia hết cho 15.

9 tháng 9 2018

a) \(S=5+5^2+5^3+5^4+...+5^{99}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{97}.31\)

\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

b) \(S=5+5^2+5^3+5^4+...+5^{99}\)

\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)

\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)

\(=5+5.30+5^3.30+...+5^{97}.30\)

\(=5+30.\left(5+5^3+...+5^{97}\right)\)

\(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)

c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)

\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)

\(4S=5^{100}-5\)

\(\Rightarrow25^x-5=5^{100}-5\)

\(\Rightarrow25^x=5^{100}\)

\(\Rightarrow25^x=25^{50}\)

\(\Rightarrow x=50\)

9 tháng 9 2018

S = 5 + 52 + 53 + 54 + .......... + 599

a)  S = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 597 + 598 + 599 )

    = 5. ( 1 + 5 + 52 ) + 54 . ( 1 + 5 + 52 ) + .... + 597 . ( 1 + 5 + 52 )

     = ( 1 + 5 + 52 ). ( 5 + 54 + .. + 597 )

      = 31 . ( 5 + 54 + .... + 597 ) chia hết cho 31 ( đpcm )

c ) 5S = 52 + 53 + .. + 5100

=> 5S - S = 4S = 5100 + 599 + ........ + 53 + 52 - 5 - 52 - 53 - ..... - 599

                         = 5100 - 5 

25x - 5 = 4S

=> 25x - 5 = 5100 - 5

=> 25x = 5100

=> 25x = ( 52 )50

=> 25x = 2550

=> x = 50

Vậy  x = 50

Câu b quên cách làm rồi     

a) S=5+52+53+54+...+599

=(5+52+53)+(54+55+56)+...+(597+598+599)

=5(1+5+52)+54(1+5+52)+...+597(1+5+52)

=5.31+54.31+...+597.31

=31(5+54+...+597)⋮31(đpcm)

b) S=5+52+53+54+...+599

=5+(52+53)+(54+55)+...+(598+599)

=5+5(5+52)+53(5+52)+...+597(5+52)

=5+5.30+53.30+...+597.30

=5+30.(5+53+...+597)

Mà 5⋮̸30 nên S⋮̸30(đpcm)

c) Ta có: 5S=52+53+54+55+...+5100

5SS=(52+53+54+55+...+5100)−(5+52+53+54+...+599)

4S=5100−5

⇒25x−5=5100−5

⇒25x=5100

⇒25x=2550

x=50

22 tháng 9 2019

A= 75×[(42011 - 1)/3] +25

A = 25×(42011- 1) +25

A= 25×4×42010 - 25 +25

A= 100 × 42010

A chia hết cho 100

10 tháng 12 2022

Bài 2:

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^9\left(1+5\right)\)

\(=6\left(5+5^3+...+5^9\right)⋮6\)

 

11 tháng 11 2014

A=1 +3+3^2 +3^3+...+3^99

=(1+3)+3^2(1+3)+...+3^98(1+3)

=4+3^2.4+...+3^98.4

= 4(1+3^2+...+3^98)

Vì 4 chia hết cho 4 nên A chia hết cho 4 -_-