Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có 14 và 28 có cùng số dư khi chia7 là 0
mà 28 - 14 = 14 chia hết cho 7 (đpcm)
2. Ta có : \(\overline{aaa}=\overline{a}.111\)
=> \(\overline{aaa}=\overline{a}.3.37⋮37\)
=> \(\overline{aaa}\) luôn chia hết cho 37 (đpcm)
1, Gọi số thứ nhất có dạng 7k+n ; số thứ 2 có dạng 7x+n;
=> \(7k+n-\left(7x+n\right)=7k-7x=7\left(k-x\right)⋮7\)
2, Ta có: \(\overline{aaa}=100a+10a+a=111a=37.3.a⋮37\)
Do có chứa 1 thừa số là 37;
3, \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)
a)aaa=a*111 mà 111=3*37 chia hết cho 37
b)aaa aaa=a*111 111 mà 111 111=3*7*11*13*37 chia hết cho 7
c)abc abc=abc*1001 mà 1001=7*11*13 chia hết cho 11.
Ta có \(\overline{abba}=a.1000+b.100+b.10+a\)
\(=\left(a.1000+a\right)+\left(b.100+b.10\right)\)
\(=a.1001+b.110\)
\(=11.\left(a.91+b.10\right)⋮11\)
Vậy....
abba = 1000a+100b+10b+a
=(1000a+a)+(100b+10b)
=1001a+110b
=(91×11)a+(11×10)b
Vi 11chia het cho 11=> (91×11)a chia het cho 11 va (11×10)b chia het cho 11
Vay so co dang abba se chia het cho 11
Chuc ban hoc gioi nhe Hoang Vu .👩
a) Gọi số thứ nhất là k, số thứ hai là k + 1, số thứ ba là k + 2, số thứ tư là k + 3. Ta có
k + k + 1 + k + 2 + k + 3
k x 4 + 6
Vì k x 4 + 6 ko chia hết cho 4 nên tổng của 4 số tự nhiên liên tiếp ko chia hết cho 4.
b) Ta có:
\(\overline{aaa}=3\times37\times a\)
Vậy, \(\overline{aaa}⋮37\)
a) gọi 4 số tự nhiên liên tiếp là a; a+1; a+2; a+3
Theo đề bài ta có: a + (a+1)+ ( a+2)+(a+3) = (a+a+a+a)+(1+2+3) = 4a + 6 =>...............
b) \(\overline{aaa\overline{ }=100a+10+a=111a}\)
Do 11 chia hết cho 37 => 111a chia hết cho 37=> aaa chia hết cho 37
Ta có:
\(\overline{aaaaaa}=\overline{aaa}\cdot1001=\overline{aaa}\cdot7\cdot11\cdot13⋮7\)
Vậy \(\overline{aaaaaa}⋮7\)
Ta có aaaaaaaaaaaa¯ = 111111.a = 3.7.11.13.37.a
Vì 3.7.11.13.37.a ⋮ 7 nên 111111.a ⋮ 7
Vậy số có dạng aaaaaaaaaaaa¯ bao giờ cũng chia hết cho 7
Ta có : \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.11.91⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Ta có \(\overline{abcabc}=\overline{abc}.1001\)
\(=\overline{abc}.11.91⋮11\)
\(=>\overline{abcabc}⋮11\left(dpcm\right)\)
Ta có \(\overline{aaa}=a.111=a.3.37\)
\(=>a.3.37⋮37\)
Vậy \(\overline{aaa}⋮37\left(dpcm\right)\)
Ta có ¯¯¯¯¯¯¯¯¯aaa=a.111=a.3.37aaa¯=a.111=a.3.37
=>a.3.37⋮37=>a.3.37⋮37
Vậy ¯¯¯¯¯¯¯¯¯aaa⋮37(dpcm)
nhân tiện, đề bài có gì đó sai