K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

Ta có: a.(b+1)      b.(a+1)

=ab+a              = ab +b

Vì a,b thuộc Z và a<b,b>0

suy ra: ab+a < ab+b

suy ra: a/b<a+1/b+1 (ĐPCM)

22 tháng 5 2016

Xét hiệu : \(a\left(b+1\right)-b\left(a+1\right)=ab+a-ab-b=a-b\)

Vì a<b => a-b<0 => a(b+1) -b(a+1)<0 => a(b+1)<b(a+1)

Mặt khác vì b>0 nên b+1>0 => b(b+1)>0

=> \(\frac{a\left(b+1\right)}{b\left(b+1\right)}< \frac{b\left(a+1\right)}{b\left(b+1\right)}hay\frac{a}{b}< \frac{a+1}{b+1}\)

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

Hay mình làm cụ thể hơn cho bạn dễ hiểu

2 tháng 9 2017

 Xét 3 TH : 
1) a < b 
Khi đó ta có ab + 2009a < ab + 2009b hay a(b+2009) < b(a+2009) 
Chia 2 vế cho b(b+2009) ta được a/b < (a+2009)/(b+2009) 

2) a = b ---> a/b = (a+2009)/(b+2009) = 1 

3) a > b 
Khi đó ta có ab + 2009a > ab + 2009b hay a(b+2009) > b(a+2009) 
Chia 2 vế cho b(b+2009) ta được a/b > (a+2009)/(b+2009) 

Tóm lại 
a/b < (a+2009)/(b+2009) nếu a < b 
a/b = (a+2009)/(b+2009) nếu a = b 
a/b > (a+2009)/(b+2009) nếu a > b

2 tháng 8 2017

Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)(  a, b, m \(\in\) Z, m > 0 )

Vì x < y nên ta suy ra a < b

Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y   (2)

Từ (1) và (2) ta suy ra x < z< y


 

Ta có: a+b+c=1 <=>(a+b+c)= 1 <=> ab+bc+ca=0 (1) 
Theo  dãy tỉ số bằng nhau ta có: 
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z) 
=> xy+yz+zx=  ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2) 
từ (1) và (2) => xy + yz + zx = 0

Mình nhâm sorry

Từ x : y : z = a : b : c

=> xa=yb=zcxa=yb=zc

=> ax=by=czax=by=cz

Áp dụng t/c dãy tỉ số bằng nhau:

ax=by=cz=a+b+cx+y+z=1x+y+zax=by=cz=a+b+cx+y+z=1x+y+z (Vì a + b + c = 1) (*1)

Ta có : ax=by=czax=by=cz

=> (ax)2=(by)2=(cy)2(ax)2=(by)2=(cy)2a2x2=b2y2=c2z2a2x2=b2y2=c2z2

Áp dụng t/c dãy tỉ số bằng nhau:

a2x2=b2y2=c2z2=a2+b2+c2x2+y2+z2=1x2+y2+z2a2x2=b2y2=c2z2=a2+b2+c2x2+y2+z2=1x2+y2+z2 (*2)

Từ (1),(2) => (1x+y+z)2=1x2+y2+z2(1x+y+z)2=1x2+y2+z2

=> 12(x+y+z)2=1x2+y2+z212(x+y+z)2=1x2+y2+z2

=> 1(x+y+z)2=1x2+y2+z21(x+y+z)2=1x2+y2+z2

=> (x+y+z)2=x2+y2+z2(x+y+z)2=x2+y2+z2 (ĐPCM) (Vì hai phân số bằng nhau,tử số bằng nhau => mẫu số bằng nhau.)

28 tháng 8 2016

/hoi-dap/question/77727.html