Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{2}{3}+\frac{2}{5}\right)x=\frac{1}{5}-2\frac{1}{2}\)
\(\frac{16}{15}x=\frac{1}{5}-1\)
\(\frac{16}{15}x=-\frac{4}{5}\)
\(x=-\frac{4}{5}\div\frac{16}{15}\)
\(x=-\frac{3}{4}\)
b)\(\frac{4}{7}x-\frac{2}{3}=\frac{1}{5}\)
\(\frac{4}{7}x=\frac{1}{5}+\frac{2}{3}\)
\(\frac{4}{7}x=\frac{13}{15}\)
\(x=\frac{13}{15}\div\frac{4}{7}\)
\(x=\frac{91}{60}\)
\(\left(\frac{2}{3}+\frac{1}{5}\right)\)CHỨ HK PHẢI LÀ \(\left(\frac{2}{3}+\frac{2}{5}\right)\)ĐÂU Ạ
CHO MK XIN LỖI VÌ GHI SAI ĐẦU BÀI
\(\left(\frac{1}{2}-\frac{3}{4}\right):\frac{1}{2}+\left(\frac{1}{2}\right)^2\)
\(=\left(\frac{2}{4}-\frac{3}{4}\right):\frac{1}{2}+\frac{1}{4}\)
\(=\frac{-1}{4}:\frac{1}{2}+\frac{1}{4}\)
\(=\frac{-1}{4}.\frac{2}{1}+\frac{1}{4}\)
\(=\frac{-1}{2}+\frac{1}{4}\)
\(=\frac{-2}{4}+\frac{1}{4}\)
\(=\frac{-1}{4}\)
\(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)
\(\Rightarrow A>\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{50\cdot51}\)
\(\Rightarrow A>\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\)
\(\Rightarrow A>\frac{1}{3}-\frac{1}{51}=\frac{17}{51}-\frac{1}{51}=\frac{16}{51}\)
Mà \(\frac{16}{51}>\frac{1}{4}\Rightarrow A>\frac{16}{51}>\frac{1}{4}\Rightarrow A>\frac{1}{4}\)
Áp dụng công thức: \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\)
Ta có: \(\frac{1}{2^2}< \frac{8}{9}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3}-\frac{1}{4}\)
-----------------------------------------
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{8}{9}-\frac{1}{9}=\frac{7}{9}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{8}{9}\)(1)
Đảo ngược công thức trên lại,ta lại có: \(\frac{1}{a+1}+\frac{1}{a}=\frac{1}{\left(a+1\right)a}< \frac{1}{a.a}=\frac{1}{a^2}\)
SAu đó bạn làm tương tự như trên sẽ được . Giờ mình bận rồi=)))
Đây là toán nhé =))
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{9^2}< \frac{1}{8.9}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\left(1\right)\)
Lại có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{9^2}>\frac{1}{9.10}\)
\(\Rightarrow S>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\left(2\right)\)
Từ (1) và (2) => \(\frac{2}{5}< S< \frac{8}{9}\)
\(=\)\(\left(\frac{67}{111}+\frac{2}{33}-\frac{15}{117}\right)\times\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)
\(=\left(\frac{67}{111}+\frac{2}{33}-\frac{15}{117}\right)\times0\)
\(=0\)
\(\left(\frac{67}{111}+\frac{2}{33}-\frac{15}{117}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
=\(\left(\frac{67}{111}+\frac{2}{33}-\frac{15}{117}\right).\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)
=\(\left(\frac{67}{111}+\frac{2}{33}-\frac{15}{117}\right).\left(\frac{1}{12}-\frac{1}{12}\right)\)
=\(\left(\frac{67}{111}+\frac{2}{33}-\frac{15}{117}\right).0\)
=0
=3/2 . 4/3 .... . 7/6
=3.4.5.6.7/2.3.4.5.6
=7/2
chúc bạn học tốt nha, ủng hộ mk với nha
a, \(x-\frac{5}{6}=\frac{-2}{3}\)
\(\Leftrightarrow x=\frac{1}{6}\)
b, \(\frac{-7}{5}+x=\frac{-4}{3}\)
\(\Leftrightarrow x=\frac{1}{15}\)
c, \(x-\frac{2}{5}=-\frac{1}{6}-\frac{3}{-4}\)
\(\Leftrightarrow x-\frac{2}{5}=-\frac{1}{6}+\frac{3}{4}\)
\(\Leftrightarrow x-\frac{2}{5}=\frac{7}{12}\Leftrightarrow x=\frac{59}{60}\)
Ta có:
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)>\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\right)\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Vì \(\frac{9}{10}< 1\)và \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{9}{10}\)nên \(D< 1\)
Bạn ghi đề sai rồi nhé.