Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+3+3^2+...+3^9\)
Ta có: \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^8+3^9\right)\)
\(S=4+3^2.\left(1+3\right)+...+3^8.\left(1+3\right)\)
\(S=4+3^2.4+...+3^8.4\)
\(S=4.\left(1+3^2+...+3^8\right)\)
Vì \(4⋮4\) nên \(4.\left(1+3^2+...+3^8\right)⋮4\)
Vậy \(S⋮4\).
\(#NqHahh\)
Bài 1:
a: \(=2^{24}+2^{60}=2^{24}\left(2^{36}+1\right)\)
\(=2^{24}\left(2^4+1\right)\cdot A=17\cdot B⋮17\)
b: \(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\cdot\left(2+2^5+...+2^{57}\right)\) chia hết cho 3;5;15
\(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(S=\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+...+3^8\right)⋮4\)
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
Ta có: A= 3+3\(^2\)+3\(^3\)+3\(^4\)+3\(^5\)+3\(^6\)+3\(^7\)+3\(^8\)+3\(^9\)+3\(^{10}\)
\(\Rightarrow\)A= (3+3\(^2\)) +(3\(^3\)+3\(^4\))+(3\(^5\)+3\(^6\)) +(3\(^7\)+3\(^8\))+(3\(^9\)+3\(^{10}\))
\(\Rightarrow\) A= 12 + 3\(^2\)(3\(^1\)+3\(^2\))+3\(^4\)(3\(^1\)+3\(^2\)) +3\(^6\)(3\(^1\)+3\(^2\)) + 3\(^8\)(3\(^1\)+3\(^2\))
\(\Rightarrow\) A= 12 + 3\(^2\). 12+3\(^4\) . 12+3\(^6\) .12+ 3\(^8\) .12
\(\Rightarrow\)A= 12 . ( 3\(^2\)+3\(^4\) +3\(^6\)+ 3\(^8\))
Vì 12 \(⋮\)4 \(\Rightarrow\)12 . ( 3\(^2\)+3\(^4\) +3\(^6\)+ 3\(^8\)) \(⋮\)4 hay A \(⋮\)4
cả 2 vế so sánh chung \(\frac{3}{8^3}\) nên lược bỏ \(\frac{3}{8^3}\)
Còn lại phải so sánh 43 và 34 với \(\frac{7}{8^4}\) và \(\frac{3}{8^4}\)
Ta thấy rằng \(3^4+\frac{3}{8^4}>4^3+\frac{7}{8^4}\)
nên => ĐPCM