K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Ta có: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

21 tháng 3 2017

1/n - 1/n+1 = n+1/n(n+1) - n/n(n+1) = n+1-n/n(n+1) = 1/n(n+1)

Vậy 1/n(n+1) = 1/n - 1/n+1

21 tháng 3 2017

Ta có : Quy tắc 1/n+(n+1) = 1/n - 1/n+1

3 tháng 12 2019

Gọi  \(d=ƯCLN\left(n+2;3n+5\right)\)

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(n+2\right)⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+5⋮d\end{cases}}\)

\(\Rightarrow\left(3n+6\right)-\left(3n+5\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó: ƯCLN(n + 2; 3n + 5) = 1

Vậy hai số n + 2 và 3n + 5 là hai số nguyên tố cùng nhau.

Học tốt nhé ^3^

3 tháng 12 2019

Gọi ƯCLN(n + 2, 3n + 5) là d (d thuộc N*)

Ta có  n + 2 chia hết cho d

           3n + 5 chia hết cho d

=>       3(n + 2) chia hết cho d

           3n + 5 chia hết cho d

=>       3n + 6 chia hết cho d

           3n + 5 chia hết cho d

=> (3n + 6) - (3n + 5) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

Ư(1) = {1}

=> d = 1 

=>  ƯCLN (n+2, 3n + 5) = 1

 Vậy n + 2 và 3n + 5 là hai số nguyên tố cùng nhau

(Mik nghĩ vậy tại mik ko nhớ cho lắm)

Hok tốt

23 tháng 12 2017

Gọi d là ƯCLN(n;n+1)

Ta có :

n chia hết cho d

n+1 chia hết cho d

Suy ra : (n+1)-n Chia hết cho d 

Hay 1 chia hết cho d 

Suy ra : d thuộc Ư(1) = {1}

Vậy d= 1 hay ƯCLN(n;n+1)=1 (đpcm)

23 tháng 12 2017

cái này là 2 số tự nhiên đôi 1 nên chuyện ucln của nó =1 là chuyện bình thường nhe bạn

27 tháng 2 2017

Ta có: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

Vậy \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

16 tháng 3 2017

a) Vì n.(n+1) = 1/n-1/n+1 suy ra n thuộc N      n khác 0

b) A=1/1*2+1/2*3+1/3*4+...+1/9.10

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10

A=1-1/10=9/10

Vậy A = 9/10

24 tháng 11 2017

Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2

Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Vậy n.(n+1).(n+5) chia hết cho 3

=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

k mk nha

24 tháng 11 2017

vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp  , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2

+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2 

- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3

- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )

khi đó  n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3 

- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )

khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

mà ƯCLN( 2 ; 3 ) = 1

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3

=> n ( n + 1 ) ( n + 2 ) chia hết cho 6

chúc bạn học tốt

^^

6 tháng 3 2020

Ta có 2n+1=2(n-3)+7

Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3

Vì 2(n-3) chia hết cho n-3

=> 7 chia hết cho n-3

n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4 

Nếu n-3=-1 => n=2

Nếu n-3=1 => n=4

Nếu n-3=7 => n=10

6 tháng 3 2020

Ta có : \(2n+1⋮n-3\)

\(=>2n-6+7⋮n-3\)

\(Do:2n-6⋮n-3\)

\(=>7⋮n-3\)

\(=>n-3\inƯ\left(7\right)\)

Nên ta có bảng sau : 

n-371-7-1
n104-42

Vậy ...