Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/n - 1/n+1 = n+1/n(n+1) - n/n(n+1) = n+1-n/n(n+1) = 1/n(n+1)
Vậy 1/n(n+1) = 1/n - 1/n+1
Gọi \(d=ƯCLN\left(n+2;3n+5\right)\)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(n+2\right)⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+5⋮d\end{cases}}\)
\(\Rightarrow\left(3n+6\right)-\left(3n+5\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Do đó: ƯCLN(n + 2; 3n + 5) = 1
Vậy hai số n + 2 và 3n + 5 là hai số nguyên tố cùng nhau.
Học tốt nhé ^3^
Gọi ƯCLN(n + 2, 3n + 5) là d (d thuộc N*)
Ta có n + 2 chia hết cho d
3n + 5 chia hết cho d
=> 3(n + 2) chia hết cho d
3n + 5 chia hết cho d
=> 3n + 6 chia hết cho d
3n + 5 chia hết cho d
=> (3n + 6) - (3n + 5) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
Ư(1) = {1}
=> d = 1
=> ƯCLN (n+2, 3n + 5) = 1
Vậy n + 2 và 3n + 5 là hai số nguyên tố cùng nhau
(Mik nghĩ vậy tại mik ko nhớ cho lắm)
Hok tốt
Gọi d là ƯCLN(n;n+1)
Ta có :
n chia hết cho d
n+1 chia hết cho d
Suy ra : (n+1)-n Chia hết cho d
Hay 1 chia hết cho d
Suy ra : d thuộc Ư(1) = {1}
Vậy d= 1 hay ƯCLN(n;n+1)=1 (đpcm)
a) Vì n.(n+1) = 1/n-1/n+1 suy ra n thuộc N n khác 0
b) A=1/1*2+1/2*3+1/3*4+...+1/9.10
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
A=1-1/10=9/10
Vậy A = 9/10
Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3
=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2
+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2
- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )
khi đó n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )
khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
mà ƯCLN( 2 ; 3 ) = 1
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3
=> n ( n + 1 ) ( n + 2 ) chia hết cho 6
chúc bạn học tốt
^^
Ta có 2n+1=2(n-3)+7
Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3
Vì 2(n-3) chia hết cho n-3
=> 7 chia hết cho n-3
n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4
Nếu n-3=-1 => n=2
Nếu n-3=1 => n=4
Nếu n-3=7 => n=10
Ta có : \(2n+1⋮n-3\)
\(=>2n-6+7⋮n-3\)
\(Do:2n-6⋮n-3\)
\(=>7⋮n-3\)
\(=>n-3\inƯ\left(7\right)\)
Nên ta có bảng sau :
n-3 | 7 | 1 | -7 | -1 |
n | 10 | 4 | -4 | 2 |
Vậy ...
Ta có: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)