K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Với \(-2< x< 2\Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x+2>0\end{matrix}\right.\Leftrightarrow\left(x-2\right)\left(x+2\right)< 0;x\ne-1\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow A< 0\)

19 tháng 12 2021

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+1}{x^2-4}\)

11 tháng 8 2016

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}=\)\(\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\)\(\frac{x+2+x-2+x^2+1}{x^2-4}=\)

=(x^2+2x+1)/(x-2)(x+2)=(x+1)^2/(x-2)(x+2)

Vì x>-2 và x<2 nên (x-2)<0, x+2>0, \(\left(x+1\right)^2>0\). Suy ra A<0

20 tháng 12 2019

\(A=\frac{1}{x-2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)

a)\(A=\frac{1}{x-2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x-2+x-2}{x^2-4}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x^2+2x-3}{x^2-4}\)

đầu bài sai rồi bạn ơi bạn cho x=0 thì \(A=\frac{3}{4}\)là số dương rồi 

2 tháng 2 2020

\(a,Đkxđ:x\ne\pm2\)

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x+1\right)^2}{x^2-4}\)

b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)

Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)

\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)

Vậy ............