Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)
\(\Leftrightarrow4m^2-6m>=0\)
=>m<=0 hoặc m>=3/2
a: \(x^2-mx-4=0\)
a=1; b=-m; c=-4
Vì \(a\cdot c=1\cdot\left(-4\right)=-4< 0\)
nên phương trình luôn có hai nghiệm phân biệt với mọi m
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1\cdot x_2=\dfrac{c}{a}=-\dfrac{4}{1}=-4\end{matrix}\right.\)
\(x_1x_2-x_1^2-x_2^2=-13\)
=>\(x_1x_2-\left(x_1^2+x_2^2\right)=-13\)
=>\(x_1x_2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-13\)
=>\(-4-m^2+2\cdot\left(-4\right)=-13\)
=>\(-12-m^2=-13\)
=>\(m^2=1\)
=>\(\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
a: Δ=(2m-2)^2-4*(-2m)
=4m^2-8m+4+8m=4m^2+4>0
=>Phương trình luôn có hai nghiệm phân biệt
b: x1+x2=2m-2; x1x2=-2m
c: x1^2+x2^2=4
=>(x1+x2)^2-2x1x2=4
=>(2m-2)^2-2*(-2m)=4
=>4m^2-8m+4+4m=4
=>4m^2-4m=0
=>m=0 hoặc m=1
∆ = [-2(m + 2)]² - 4(m + 1)
= 4m² + 16m + 16 - 4m - 4
= 4m² + 12m + 12
= 4m² + 12m + 9 + 3
= (2m + 3)² + 3 > 0 với mọi m
Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
a: Δ=(2m-2)^2-4*(-2m)
=4m^2-8m+4+8m=4m^2+4>0
=>Phương trình luôn có hai ngiệm phân biệt
b: x1+x2=2m-2; x1x2=-2m
\(x^2-mx+m-2=0\) (1) (a=1;b=-m;c=m-2)
\(\Delta=b^2-4ac=m^2-4.\left(-m\right).\left(m-2\right)\)
\(=m^2+4m^2-8m\)
=5m2-8m
Đến đây đưa về hằng đẳng thức mà ra dấu (-) bn xem đề có sai ko
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)=4>0\) ;\(\forall m\ne-1\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi \(m\ne-1\)
\(a.pt:x^2+2\left(1-m\right)x-m=0\)
\(\Delta=\left(2-2m\right)^2-4.1.\left(-m\right)=4-8m+4m^2+4m=4m^2-4m+4=\left(2m-1\right)^2+3>0\forall m\)
⇒ pt luôn có 2 nghiệm phân biệt
\(b.pt:x^2+mx-m^2-1=0\)
Ta có: \(m^2+1>0\forall m\Rightarrow-\left(m^2+1\right)< 0\forall m\)
Vì \(a.c< 0\) ⇒ pt luôn có 2 nghiệm phân biệt