Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
gọi ba số tự nhiên liên tiếp là a;a+1;a+2
ta có :
a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3
=>dpcm
2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4
ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5
=>dpcm
b)goi 3 số tự nhiên la a, a+1, a+2
tổng 3 số la 3a+3 chia hết cho 3
a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
Ta đã biết 1 số khi chia cho 3 chỉ có thể dư 0; 1 hoặc 2
Mà 2 số đề bài cho không chia hết cho 3 và chia 3 có số dư khác nhau
=> trong 2 số đó có 1 số chia 3 dư 1; 1 số chia 3 dư 2
Gọi 2 số đó là: 3.a + 1 và 3.b + 2
Ta có: (3.a + 1) + (3.b + 2)
= 3.a + 1 + 3.b + 2
= 3.a + 3.b + 3
= 3.(a + b + 1) chia hết cho 3
Chứng tỏ ...
B= ( 1+3+32+33)+....+(396+397+398+399)
B=(1+3+32+33)+......+396x(1+3+32+33)
B=40x1+......+396x40
B=40x(1+....+396)
Vì 40 chia hết cho 40 =)40x(1+....+396) chia hết cho 40
Hay B chia hết cho 40
Vậy B chia hết cho 40
Có : 126 chia hết cho 3, 213 chia hết cho 3
Để được M chia hết cho 3 thì x phải chia hết cho 3
Hay gọi là 3k ( k thuộc N)
2.
Hình như đầu bài bài 2 sai
= (1+ 3 + 32 + 33) +...+ (396 + 397 + 398 + 399)
= 40 + ...+ 396( 1 + 3 + 32 + 33)
= 40 +...+396. 40
= 40( 1 +...+396) : hết cho 40
nguyễn thanh hải tick nha, chtt