Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có 14 và 28 có cùng số dư khi chia7 là 0
mà 28 - 14 = 14 chia hết cho 7 (đpcm)
2. Ta có : \(\overline{aaa}=\overline{a}.111\)
=> \(\overline{aaa}=\overline{a}.3.37⋮37\)
=> \(\overline{aaa}\) luôn chia hết cho 37 (đpcm)
1, Gọi số thứ nhất có dạng 7k+n ; số thứ 2 có dạng 7x+n;
=> \(7k+n-\left(7x+n\right)=7k-7x=7\left(k-x\right)⋮7\)
2, Ta có: \(\overline{aaa}=100a+10a+a=111a=37.3.a⋮37\)
Do có chứa 1 thừa số là 37;
3, \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)
ab-ba
=10a +b-10b+a
=(10a-a)-(10b-b)
=9a-9b
=9(a-b)
Mà 9 chia hết cho 9
=>9(a-b) chia hết cho 9
=>ab-ba chia hết cho 9
Vậy ab-ba chia hết cho 9
Ta có
ab + ba =10a+b+10b+a
=(10a+a)+(10b+b)
=11a+11b=11(a+b)
=> ab + ba chia hết cho 11.
ta có:
ab+ba=(a.10+b)+(b.10+a)=a.11+b.11
vì 11chia hết cho 11 => (a+b).11 chia hết cho 11
=> ab+ba chia hết cho 11
k nha
Ta có:
\(\overline{aaaaaa}=\overline{aaa}\cdot1001=\overline{aaa}\cdot7\cdot11\cdot13⋮7\)
Vậy \(\overline{aaaaaa}⋮7\)
Ta có aaaaaaaaaaaa¯ = 111111.a = 3.7.11.13.37.a
Vì 3.7.11.13.37.a ⋮ 7 nên 111111.a ⋮ 7
Vậy số có dạng aaaaaaaaaaaa¯ bao giờ cũng chia hết cho 7
Ta có : \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.11.91⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Ta có \(\overline{abcabc}=\overline{abc}.1001\)
\(=\overline{abc}.11.91⋮11\)
\(=>\overline{abcabc}⋮11\left(dpcm\right)\)
Ta có \(\overline{abba}=a.1000+b.100+b.10+a\)
\(=\left(a.1000+a\right)+\left(b.100+b.10\right)\)
\(=a.1001+b.110\)
\(=11.\left(a.91+b.10\right)⋮11\)
Vậy....
abba = 1000a+100b+10b+a
=(1000a+a)+(100b+10b)
=1001a+110b
=(91×11)a+(11×10)b
Vi 11chia het cho 11=> (91×11)a chia het cho 11 va (11×10)b chia het cho 11
Vay so co dang abba se chia het cho 11
Chuc ban hoc gioi nhe Hoang Vu .👩
Ta có: abba = 1000a + 100b + 10b + a
= 1001a + 110b
= 11. 91a + 11. 10b
= 11( 91a + 10b ) chia hết cho 11
Vậy abba chia hết cho 11( điều phải chứng minh )
Chúc bạn học tốt! ~ Sorry vì abba ko có gạch trên đầu ( mk ko biết đâu )
Ta có : \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b+a\right)\)
\(=10a+b-10b-a=10a-10b+b-a\)
\(=10\left(a-b\right)-\left(a-b\right)=\left(10-1\right)\left(a-b\right)=9\left(a-b\right)⋮9\)
( Vì \(9⋮9\) ; \(a\ge b\) ) \(\Rightarrow\overline{ab}-\overline{ba}⋮9\)
Vậy \(\overline{ab}-\overline{ba}⋮9\)
Ta có:
\(\overline{ab}=10.a+b\)
\(\overline{ba}=10.b+a\)
\(=>\overline{ab}-\overline{ba}=10a+b-10b+a\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\)
\(=>\overline{ab}-\overline{ba}⋮9\left(dpcm\right)\)