K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

có A= \(\frac{3}{5.2!}\)+\(\frac{3}{5.3!}\)+...+\(\frac{3}{5.100!}\)=\(\frac{3}{5}\)(\(\frac{1}{2!}\)+\(\frac{1}{3!}\)+....+\(\frac{1}{100!}\))

đặt vế trong ngoặc là B. Đặt \(\frac{1}{2!}\)+\(\frac{2}{3!}\)+...+\(\frac{99}{100!}\)=C ta có C=\(\frac{2-1}{2!}\)+\(\frac{3-1}{3!}\)+....+\(\frac{100-1}{100!}\)

=\(\frac{2}{2!}\)-\(\frac{1}{2!}\)+\(\frac{1}{2!}\)-\(\frac{1}{3!}\)+...+\(\frac{1}{99!}\)-\(\frac{1}{100!}\)=1-\(\frac{1}{100!}\)<1

mà \(\frac{1}{2!}\)=\(\frac{1}{2!}\);\(\frac{1}{3!}\)<\(\frac{2}{3!}\);....;\(\frac{1}{100!}\)<\(\frac{99}{100!}\)\(\Rightarrow\)B<C<1\(\Rightarrow\)B.\(\frac{3}{5}\)<1.\(\frac{3}{5}\)=\(\frac{3}{5}\)=0.6\(\Rightarrow\)A<0.6

Cũng đơn giản mà em nhớ k cho chị nha !

8 tháng 2 2019

vế trái được viết dưới dạng :

 \(\frac{3}{5}.\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+....+\frac{1}{100!}\right)< \frac{3}{5}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

\(=\frac{3}{5}\left(1-\frac{1}{100}\right)< \frac{3}{5}=0,6\)

17 tháng 3 2018

Đề còn thiếu 1 điều kiện nữa là \(n>0\)

Đặt \(A=\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}\) ta có : 

\(A=\frac{4}{5}\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\right)\)

Để \(A< 0,8\) thì \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1\)

Đặt \(B=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\) ta có : 

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}+\frac{1}{n}\)

\(B< 1-\frac{1}{n}< 1\)

\(\Rightarrow\)\(B< 1\) ( đpcm ) 

Suy ra : \(A=\frac{4}{5}.B=0,8.B< 0,8\) ( vì \(B< 1\) ) 

Vậy \(\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}< 0,8\)

Chúc bạn học tốt ~ 

31 tháng 3 2016

bạn trừ 4/5.n! choa 4/5n.2 thì sẽ chứng minh được

31 tháng 3 2016

sao cau lao the ha