Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
\(=\dfrac{3x\left(-x^2\right)}{3x}+\dfrac{2}{3x}-\dfrac{3x}{3x}=\dfrac{-3x^3+2-3x}{3x}\)
\(=\dfrac{-x^2+2-3x}{1}=-\left(x^2-2+3x\right)\)
vậy bt A luôn......
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
Ta thấy \(x^2+1\ge1>0\forall x\)
\(\Rightarrow\left(x^2+1\right)^2\ge\left(x^2+1\right)\forall x\ge0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x^2+1\right)\ge0\)
\(\Rightarrow A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+20\left(x^2+1\right)^2+\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
\(\ge1^4+9.1^4+20.1^2+0-30=0\)
\(\Rightarrow Min.A=0\Leftrightarrow x^2+1=1\Leftrightarrow x=0\)
Vậy A luôn không âm với mọi giá trị của biến.
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
P = x2 - 2x + 2 = (x – 1)2 + 1
Do (x – 1)2 ≥ 0 ∀x nên (x – 1)2 + 1 ≥ 1 ∀x
Vậy P luôn lớn hơn 0 với mọi x.
\(E=x^2+6x+11\)
\(=x^2+6x+9+2\)
\(=\left(x+3\right)^2+2>0\forall x\)
\(F=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(A=\left(x^2-2\right)\left(x^2+x+1\right)-x\left(x^3+x^2-3x-2\right)=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x=2\left(đpcm\right)\)