Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(14n+3,21n+5\right)=d\).
Suy ra
\(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow2\left(21n+5\right)-3\left(14n+3\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Gọi d = ƯCLN ( 14n + 3 , 21n + 5 )
Xét hiệu :
\(\left(21n+5\right)-\left(14n+3\right)⋮d\)
\(2\left(21n+5\right)-3\left(14+3\right)⋮d\)
\(42n+10-42n-9⋮d\)
\(10-9⋮d\)
\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)=1\Rightarrow d=1\)
Vậy....
#Louis
Giả sử UCLN(14n+3;21n+5)=d
14n+3 chia hết cho d nên 42n+9 chia hết cho d
21n+5 chia hết cho d nên 42n+10 chia hết cho d
vay 1 chia hết cho d, d=1
Vậy phân số tối giản
Giải:
Gọi ƯC(14n+3;21n+5)=d
⇒14n+3 ⋮ d ⇒3.(14n+3) ⋮ d ⇒42n+9 ⋮ d
21n+5 ⋮ d 2.(21n+5) ⋮ d 42n+10 ⋮ d
⇒(42n+10)-(42n+9) ⋮ d
⇒ 1 ⋮ d
⇒d=1
Vậy 14n+3/21n+5 là phân số tối giản.
Chúc bạn học tốt!
Gọi d=ƯCLN(14n+3;21n+5)
=>42n+9-42n-10 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Gọi \(d\inƯC\left(14n+3,21n+5\right)\)
\(\Rightarrow\hept{\begin{cases}\left(14n+3\right)⋮d\\\left(21n+5\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(42n+9\right)⋮d\\\left(42n+10\right)⋮d\end{cases}}\)
\(\Rightarrow\left(42n+10\right)-\left(42+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{1\right\}\)
\(\Rightarrow1\inƯC\left(14n+3,21n+5\right)\)
\(\Rightarrow\frac{14n+3}{21n+5}\)là phân số tối giản
giải
gọi d ưcln {21n+4 và 14 n+3} =>
(21n+4) chia hết cho d=> [2.(21n+4)] chia hết cho d =>(42n+8)chia hết cho d(1)
(14n+3)chia hết cho d=> [3.(14n+3)] chia hết cho d => (42n+9)chia hết cho d(2)
từ 1 và 2 => [(42n+9)-(42n+8)] chia hết cho d => (42n+9-42n-8)chia hết cho d => [(42n_42n) +(9-8)] chia hết cho d => 1 chia hết cho d => d =1 mà d lại là ưcln {21n+4 và 14n+3)(n thuộc N)
vậy biểu thức đã được chứng minh