Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
De sai o dau phai hok ban. Phien ban xem lai giup.Toi mik giai cho
\(S=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{109}\)
\(\Rightarrow S< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (9 số hạng \(\frac{1}{100}\))
\(\Rightarrow S< \frac{1}{100}.9\)
\(\Rightarrow S< \frac{9}{100}\)
từ 101 đến 200 có 100 số
ta có 1/101 +1/102 +...+1/200 >1/200 +1/200 +....+1/200 (100số)
=> A>100/200 =1/2 (1)
A <1/101 +1/101 +....+1/101 (100)số
=> A<1 (2)
Từ (1) và(2) ta có 1/2<A<1
dựa theo trên mà làm nhé mk cố hết sức rồi
Ta thấy:
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+......+\frac{1}{200}\)
(Có 100 số hạng \(\frac{1}{200}\))
\(=\frac{1\cdot100}{200}=\frac{100}{200}=\frac{1}{2}\)
Lại có:
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+......+\frac{1}{100}\)
(Có 100 số hạng \(\frac{1}{100}\))
\(=\frac{1\cdot100}{100}=\frac{100}{100}=1\)
Vậy tổng A lớn hơn \(\frac{1}{2}\)nhưng bé hơn \(1\).
2.b) B={100;101;102;...;998;999}
Số phần tử của B là:(999-100):1+1=900( phần tử)
3.a) ab = 10a+b
b) abcd =1000a+100b+10d
6. gọi: 1+2+3+...+x =55 là A
số số hạng của A là: (x-1):1+1=x
A=\(\frac{\left(x+1\right).x}{2}\)=55
(x+1).x =55.2
(x-1).x = 110
ta có: 110=10.11
vậy:x-1=10 suy ra x=11
7. 12x+13x = 200
x.(12+13)=200
x.25 =200
x =200:25
x =8
Ta có:\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\) (100 số hạng) \(=\dfrac{1}{2}\).
\(\Rightarrow\) đpcm.
\(B=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
Vì \(\dfrac{1}{101},\dfrac{1}{102},\dfrac{1}{103},...,\dfrac{1}{199}\)đều lớn hơn \(\dfrac{1}{200}\)
\(\Rightarrow B>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(có 100 số hạng \(\dfrac{1}{200}\))
\(\Leftrightarrow B>100\cdot\dfrac{1}{200}\)
\(\Leftrightarrow B>\dfrac{1}{2}\)
Vậy \(B>\dfrac{1}{2}\)