K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2015

giả sử a=c.q+k (k\(\ne\)0)

          b=c.p+k  (q\(\ne\)p)

Khi đó hiệu của a và b là:

a-b=(c.q+k) - (c.p+k)

    =c.q+k-c.p-k

    =c.q-c.p

    =c.(q-p) chia hết cho c ( dấu . là  nhân)

8 tháng 11 2015

Đặt a = c.d + h

Đặt b = c.e + h (Vì cùng số dư)

=> a - b = (c.d + h) - (c.e + h)

a - b = c.d + h - c.e - h

a - b = (c.d - c.e) - (h - h)

a - b = c(d - e) chia hết cho c

Vậy ...

5 tháng 1 2017

nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!

8 tháng 10 2017

xl mk thấy tên bn ghê wa

19 tháng 11 2016

Gọi a , b là 2 số chia cho m có cùng số dư

=> a = mk + r ( m là số chia, k là thương, r là số dư)

b = mt + r ( m là số chia, t là thương, r là số dư)

Khi đó a - b = (mk + r ) - (mt + r) = mk + r - mt - r

= mk - mt

= m( k - t)

Vì m chia hết cho m nên m(k - t ) chia hết cho m

hay a - b chia hết cho m

Vậy nếu a và b chia cho m có cùng số dư thì a - b chia hết cho m

19 tháng 9 2016

(+) Chứng minh chiều thuận
Theo đề ra ta có 2 số thõa mãn là \(\begin{cases}km+x\\lm+x\end{cases}\) ( với k ; l ; m là số nguyên )

Xét hiệu :

\(\left(km+x\right)-\left(lm+x\right)=km-lm=m\left(k-l\right)⋮m\)

(+) Chứng minh chiều đảo :

Ta sẽ c/m bằng phương pháp phản chứng .

Giả sử a - b chia hết cho m ( 1 ) nhưng a và b không có cùng số dư khi chia cho m 

\(\Rightarrow\begin{cases}a=mk+x\\b=ml+y\end{cases}\)\(\left(k;m;x;y\in N;x,y< m;x\ne y\right)\)

=> Hiệu \(a-b=\left(mk+x\right)-\left(lk+y\right)\)

\(\Rightarrow a-b=m\left(lk-l\right)+\left(x-y\right)\)

Xét m(k - l ) chia hết cho m

x ; y < m

=> x - y < m

=> x - y không chia hết cho m

\(\Rightarrow m\left(lk-l\right)+\left(x-y\right)⋮̸m\) ( 2 )

(1) và (2) mâu thuẫn

=> Giả sử sai

=> Đpcm

19 tháng 9 2016

verry good

16 tháng 12 2016

Bài đó bn k mk mk sẽ giúp

4 tháng 10 2016

gọi hai số đó là a và b

a = m.n+r

b = m.k+r

a-b = m.n+r-(m.k+r)

a-b = m.n+r-m.k-r

a-b = m.n-m.k = m.(n-k) chia hết cho m

24 tháng 11 2016

Gọi 2 số đó là a , b ( a , b ≠ 0 ; A , B ∈ N )

Ta có : a ⋮ m => a = m.q ( q ≠ 0 ; q ∈ N )

            b ⋮ m => b = m.p ( p ≠ 0 ; p ∈ N )

=> a - b = m.q - m.p = m( q - p ) 

Vì m ⋮ m => m ( q - p ) ⋮ m => a - b ⋮ m 

=> đpcm