Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Ta có : \(\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}=\frac{101.102.103.....200}{2^{100}}=\frac{\left(101.102.103.....200\right)\left(1.2.3.....100\right)}{2^{100}\left(1.2.3.....100\right)}\)
\(=\frac{1.2.3.....200}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.100\right)}=\frac{\left(1.3.5.....99\right)\left(2.4.6.....100\right)}{2.4.6.....200}=1.3.5.....99\left(đpcm\right)\)
Ta có : 1.3.5.7.....199 = \(\frac{\left(1.3.5.7.....199\right).\left(2.4.6.8.....200\right)}{2.4.6.8.....200}=\frac{1.2.3.4.5.....199.200}{\left(1.2\right).\left(2.2\right).\left(3.2\right).....\left(100.2\right)}=\frac{1.2.3.4.5.....199.200}{2^{100}.1.2.3.....100}=\frac{101.102.103.....200}{2^{100}}\)\(=\frac{101}{2}.\frac{102}{2}\frac{103}{2}.....\frac{200}{2}\)\( \left(ĐPCM\right)\)
1.3.5.....197.199 = \(\frac{\left(1.3.5.....197.199\right)\left(2.4.6.....198.200\right)}{2.4.6......198.200}\)= \(\frac{1.2.3......199.200}{2^{100}.\left(1.2.3.....100\right)}=\frac{101.102.103......200}{2^{100}}=\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}\)
\(\frac{101}{2}\times\frac{102}{2}\times\frac{103}{2}\times...\times\frac{200}{2}\)
\(=\frac{1.2.3.....100.101.102.103.....200}{1.2.3.....100.2^{100}}\)
\(=\frac{\left(1.3.5.....199\right).\left(2.4.6.....200\right)}{\left(1.2\right).\left(2.2\right).\left(3.2\right).....\left(100.2\right)}\)
\(=1.3.5.....199\)
Ta có: \(\dfrac{1}{101}>\dfrac{1}{200};\dfrac{1}{102}>\dfrac{1}{200};....;\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Vậy...
Ta có: 1/101 > 1/200
1/102 > 1/200
1/103 > 1/200
........
1/199 > 1/200
1/200 = 1/200
=>1/101 +1/102 +1/103 +.... +1/199 +1/200 > 1/200 + 1/200 +1/200 +..... +1/200
=>1/101 + 1/102 +1/103 +..... +1/200 > 1/200x100 = 1/2
Vậy biểu thức đã cho > 1/2
Ta có :
\(1.3.5.7.....199\)
\(=\frac{1.2.3.4.5.6.7.....198.199.200}{2.4.6.....198.200}\)
\(=\frac{\left(1.2.3.....99.100\right)\left(101.102.....200\right)}{\left(1.2.3.....99.100\right)\left(2.2.2.....2.2\right)}\)
\(=\frac{101.102.....200}{2.2.....2}\)
\(=\frac{101}{2}.\frac{102}{2}.....\frac{200}{2}\left(đpcm\right)\)