Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(10^{2003}+11=1000..00+11=1000...11\)
Tổng các chữ số bằng 3
\(\Rightarrow10^{2003}+11⋮3\)
Vậy nó là hợp số
Ta có: 102003 + 11 = 100...00 + 11 = 100...11
Ta thấy: 100...11 có tổng các chữ số bằng 0
\(\Rightarrow\) 100...11 \(⋮\) 3 hay 102003 + 11 \(⋮\) 3
Vậy: 102003 + 11 là hợp số
vì chia hết cho 45 suy ra chia hết cho 9và 5
mà 10 mũ 2003+125=1000000000.....(2003 chữ số 0)+125=100000000..125(2000 số 0) có tổng các chữ số chia hết cho 9 và có tận cùng là 5 chia hết 5
vì 543.799.11 có tận cùng là 7 và 58 có tận cùng là 8 nên sẽ có tận cùng là 5 chia hết cho 5
ta có : 10\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)\(⋮\)5 mà 125\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)+ 125\(⋮\)5
ta lại có 10\(^{2003}\)= 1000...0000 có tổng các chữ số bằng 1
\(\Rightarrow\)10\(^{2003}\)+ 125 có tổng các chữ số bằng 1 + 2 + 1 + 5 = 9 nên :
10\(^{2003}\)\(⋮\)9 mà ( 5 ; 9 ) = 1
\(\Rightarrow\)10\(^{2003}\)+ 125 \(⋮\)45
Ta có: 10x10x10x10x10x10x......x10 +11
có tất cả 2003 so 10
= 10000000000000.......0 +11
=10000000000000000......011
=> 100000000......011 chia hết cho 3=> là hợp số
a/ A = 10^2003 + 125 = (10^2003 -10) + 135 Vì 135 chia hết cho 45 nên chỉ cần chứng minh B = 10^2003 - 10 chia hết cho 45
Ta có B = 10^2003 -10 =10.(10^2002 - 1) = 10.(10^1001 -1).(10^1001 + 1) = 999...90.(10^1001 + 1) chia hết cho 45 (đpcm)
Chú ý : 10^1001 - 1 = 999...9 Là số có 1001 chữ số 9
Bạn thấy thế nào với lời giải của mình?
b/ C = 543.799.111 + 58 = (60.9 + 3).(88.9 + 7).(11.9 + 2) + 58 = (9.k + 21).(11.9 + 2) + 58 = 9.m + 42 + 58 = 9.m + 90 chia hết cho 9 . Vậy C là hợp số
Ở trên mình làm vắn tắt, bạn nhân đa thức cụ thể ra nhé
Ta co 10^2003+8/9 là số tự nhiên thì 10^2003+8 chia hết cho 9
suy ra 10^2003+8=100......0+8
=1+0+0+...+0+8
=1+0+8
=9 chia hết cho 9
suy ra 10^2003+8 chia hết cho 9
Vậy 10^2003+8/9 là số tự nhiên (đpcm)
10^2003 có tận cùng là 0 mà ta có 1000000.......00008 chia hết cho 9
suy ra 10^2003 +8/9 là số tự nhiên
c/m số này có tận cùng là chứ số 5 => nó chia hết cho 5 vậy là hợp số
\(10^{2003}+125=10...000+125=10...125\left(\text{2000 chữ số 0}\right)\)chia hết cho 5 (1)
Mà 10...125 có tổng các chữ số là: 1+0+0+...+1+2+5 (2000 số 0) = 9 nên chia hết cho 9 (2)
và ƯCLN(5; 9)=1 (3)
Từ (1); (2) và (3) => 102003+125 chia hết cho 5.9 hay 102003+125 chia hết cho 45 (đpcm).
Ta có : 102003 + 125 chia hết cho 5 ( bạn tự làm được)
102003 + 125 chia hết cho 9 ( bạn tìm tổng các chữ số )
Do (5;9)=1 mà 102003 + 125 chia hết cho 9 và 5
=> 102003 + 125 chia hết cho 9.5=45
Vậy ...
= 1000.....00011
Tổng các chữ số là: 3
=> Chia hết cho 3