K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

NV
30 tháng 7 2021

\(\Leftrightarrow3x^2-2\left(a+b+c\right)x+ab+bc+ca=0\)

Pt có nghiệm kép khi và chỉ khi:

\(\Delta'=\left(a+b+c\right)^2-3\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

31 tháng 5 2019

chắc nhân ra rồi giải điều kiện delta nhỉ

ko biết klàm nha 

AH
Akai Haruma
Giáo viên
26 tháng 1

Lời giải:

$(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$

$\Leftrightarrow 3x^2-2x(a+b+c)+(ab+bc+ac)=0$

Ta thấy:

$\Delta'=(a+b+c)^2-3(ab+bc+ac)=a^2+b^2+c^2-ab-bc-ac$

$=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0$ với mọi $a,b,c\in\mathbb{R}$

$\Rightarrow$ PT đã cho luôn có nghiệm với mọi $a,b,c$