K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c
                             =(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0
Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c
Vậy a=b=c

16 tháng 6 2018

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Với \(a+b+c=0\)

Làm nốt lười quá

21 tháng 7 2018

Có :\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Xét \(a+b+c=0\)\(\Rightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}-a=b+c\\-b=c+a\\-c=a+b\end{cases}}\)

\(\Rightarrow A=\left(\frac{b+a}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)

Xét \(\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0-\forall a,b,c\in R\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

\(\Rightarrow A=\left(1+\frac{a}{a}\right)\left(1+\frac{b}{b}\right)\left(1+\frac{c}{c}\right)\)

           \(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)

Vậy\(A=-1\)hoặc\(A=8\)

5 tháng 8 2016

Mình hướng dẫn nhé : Phân tích \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Từ đó suy ra đpcm

5 tháng 8 2016

bài này là dạng phân tích đa thức thành nhân tử của lp 8 mà
 

8 tháng 11 2018

\(a^2+b^2=2ab\)

<=>  \(a^2+b^2-2ab=0\)

<=>  \(\left(a-b\right)^2=0\)

<=>   \(a-b=0\)

<=>  \(a=b\)  (đpcm)

8 tháng 11 2018

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=>   \(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

Xét:  \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>  \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>  \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>  \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

<=>  \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

<=>  \(a=b=c\)

=>  đpcm

23 tháng 12 2021

Sửa đề: a^3+b^3+c^3=3abc

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

=>ĐPCM

28 tháng 2 2021

`a^3+b^3+c^3=3abc(***)`

`a^3+b^3+c^3-3abc=0`

`<=>a^3+3ab(a+b)+c^3-3ab(a+b)-3abc=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+2ab-ac-bc)-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ac-bc-ab)=0`

Luôn đúng với `a+b+c=0`

`=>(***)` được chứng minh.

Ta có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)(đpcm)

7 tháng 10 2016

Ta có a3 + b3 +c3 -3abc = (a+b)-3ab(a+b) - 3abc + c3 
                                    = (a+b+c)[(a+b)2 -c(a+b) +c2 ] -3ab(a+b+c)

                                    = 1/2 (a+b+c)(2a2 +2b2 +2c2 -2ab-2bc-2ac)

                                    = 1/2 (a+b+c) [(a-b)2 +(b-c)2 + (c-a)2 ] 

                                    =0 ( vì bài dài nên mk nhắc giải thích bạn tự hiểu nhé)

=> a+b+c=0 hoặc a=b=c

Th1: a+b+c=0 => b-c=-a; c-a=-b; a-b=-c

=> P= 1

Th2 : a=b=c Loại (vì mẫu ko thể bằng không)

Vậy P=1

bài làm còn sơ sài mong bạn thông cảm

  

7 tháng 10 2016

Online Math sai rồi nhé.

a + b + c = 0 thì b + c mới là - a

ĐÚng là b - c = -a - 2c

Tương tự với c - a, a - b

Em tính ra , băn khoăn mỗi chỗ đó nên mới không làm được bài toán này. 

24 tháng 6 2023

ab2 hay là a2b2

24 tháng 6 2023

Là a.b^2 nhé