Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: m3- 13m= m(m2-1)-12m=m(m-1)(m+1)-12m
Vì m(m-1) là tích 2 số nguyên liên tiếp nên m(m-1)chia hết cho 2 => m(m-1)(m+1) chia hết cho 2 (1)
Mà 12m chia hết cho 2 (2)
Từ (1);(2) => m(m-1)(m+1)-12m chia hết cho 2
=> m3-13m chia hết cho 2(3)
Vì m(m-1)(m+1) là tích 3 số nguyên liên tiếp nên m(m-1)(m+1) chia hết cho 3(4)
Mà 12m chia hết cho 3(5)
Từ (4);(5) => m(m-1)(m+1)-12m chia hết cho 3
=> m3-13 chia hết cho 3 (6)
Mặt khác: (2;3)=1(7)
Từ (3);(6);(7) => m3-13 chia hết cho 6 ( với mọi m thuộc Z) (đccm)
BÀI NÀY BẠN CẦN HỌC TRƯỚC MỘT SỐ HẰNG ĐẲNG THỨC CƠ BẢN CỦA LỚP 8 NHÉ!
\(a,M=35a+70b+14=7\left(5a+10b+2\right)⋮7\left(đpcm\right)\\ b,M=5\left(7a+14b+2\right)+4\\ Mà:4⋮̸5\Rightarrow5\left(7a+14b+2\right)+4⋮̸5\\ \Rightarrow M⋮̸5\left(đpcm\right)\)
a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)
+Nếu a chia hết cho 5 , bài toán giải xong
+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5
+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5
+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5
+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có a+1=5e+4+1=(5e+5) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết cho 5
b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N
do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5
=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
Bài 4:
Ta có:
M=1+7+72+...+781
M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)
M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)
M=400+74.400+...+778.400
M=400.(1+74+...+778)
\(\Rightarrow\)M=......0
Vậy chữ số tận cùng của M là chữ số 0
Bài 5:
a)Ta có:
M=1+2+22+...+2206
M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)
M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)
M=7+23.7+...+2204.7
M=7.(1+23+...+2204)\(⋮\)7
Vậy M chia hết cho 7
c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:
Ta có:
M=1+2+22+...+2206
2M=2+22+23+...+2207
2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)
M=2+22+23+...+2207-1-2-22-...-2206
\(\Rightarrow\)M=2207-1
M+1=2207-1+1
M+1=2207
Ta có:
M+1=2x
2x=M+1
2x=2207
x=2207:2
x=\(\frac{2^{207}}{2}\)
Bài 6:
Ta có:
A=(1+3+32)+(33+34+35)+...+(357+358+359)
A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)
A=13+33.13+...+357.13
A=13.(1+33+..+357)\(⋮\)13
Vậy A chia hết cho 13
mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha
m thuộc N và ko chia hết cho 3 => m có dạng 3k+1 hoặc 3k+2. Ta có :
M=3k+1 => m^2 = (3k+1)^2= 9k +1 chia 3 dư 1 (1)
M = 3k +2 => m^2 = (3k+2)^2= 9k +4 chia 3 dư 1 (2)
Từ (1) và (2) ta suy ra m^2 chia 3 dư 1 (ĐPCM)