K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)

                                      \(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)

                                      \(=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

24 tháng 7 2019

\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}\)

\(=\frac{n}{2\left(3n+2\right)}\)

Bài 1:

\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}\)\(=\frac{11}{48}\)

\(\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(x-1\right).x}\right)\)\(=\frac{11}{48}\)

\(\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x-1}-\frac{1}{x}\right)\)\(=\frac{11}{48}\)

\(\frac{1}{4.}.\left(1-\frac{1}{x}\right)=\frac{11}{48}\)

\(1-\frac{1}{x}=\frac{11}{48}:\frac{1}{4}\)

\(1-\frac{1}{x}=\frac{11}{12}\)

\(\frac{1}{x}=1-\frac{11}{12}\)

\(\frac{1}{x}=\frac{1}{12}\)

Vậy x= 12

Bài 2 :

Xét vế trái ta có :

\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{\left(3n-1\right).\left(3n+2\right)}\)

\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}.\frac{1}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)

VẾ TRÁI ĐÚNG BẰNG VẾ PHẢI .ĐẲNG THỨC ĐÃ CHỨNG TỎ LÀ ĐÚNG

cHÚC BẠN HỌC TỐT ( -_- )

27 tháng 8 2016

\(\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{\left(n+1\right)\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}-\frac{n\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}\right)\)

\(\frac{1}{2}\left(\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}-\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

 

27 tháng 8 2016

\(\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{\left(n+1\right)\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}-\frac{n\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}-\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

7 tháng 9 2015

333333333332 + 22222222222 = 1111111111111111111111(22 chữ số 1)

2 tháng 5 2018

vi 1-1/n .n+a =0/n.n+a

0 la a 

=>a/n(n)+(a)=1/n-1/n+a