Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2\) + 4\(x\) + 10
= ( \(x^2\) + 4\(x\) + 4) + 6
= (\(x\) + 2)2 + 6
vì (\(x\) + 2)2 ≥ 0
⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)
b, \(x^2\) - 2\(x\) + 5
= (\(x^2\) - 2\(x\) + 1) + 4
= (\(x\) - 1)2 + 4
Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0
Vậy đa thức đã cho vô nghiệm (đpcm)
Ta có x4 \(\ge\)0 với mọi x
2x2 \(\ge\)0 với mọi x
\(\Rightarrow\)x^4-2x^2+2 \(\ge\) 2
\(\Rightarrow\) M(x) \(\ge\)2
VẬY đa thức M(x)=x^4-2x^2+2 ko có nghiệm
2x4>hoac =0
x2> hoac =0
=> 2x4+x2+3 >0
=> đa thức trên k có nghiệm........
ta có: 2x4 >=0; x2>=0; 3>0
Suy ra: 2x4 + x2 + 3 >0 hay G(x) khác 0
vậy G(x) vô nghiệm
Lời giải:
Để chứng minh đa thức $M(x)$ không có nghiệm, ta chứng minh \(M(x)\neq 0, \forall x\in\mathbb{R}\). Thật vậy:
\(M(x)=2x^2+2x+3=2(x^2+x)+3=2(x^2+x+\frac{1}{4})+\frac{5}{2}\)
\(=2(x+\frac{1}{2})^2+\frac{5}{2}\geq \frac{5}{2}>0, \forall x\in\mathbb{R}\)
\(\Rightarrow M(x)\neq 0, \forall x\in\mathbb{R}\)
Do đó $M(x)$ không có nghiệm (đpcm)
b.
Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)
Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm
c.
Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)
Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm
d.
Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm
4.
d. \(x^3-19x^2=0\)
\(\Leftrightarrow x^2\left(x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)
Vậy đa thức có 2 nghiệm là \(x=0;x=19\)
do 2x^4 và 2x^2 có số mũ chẵn nên luôn lớn hơn hoặc bằng 0.
Do đó: 2x^4.2X^2+3 luôn lớn hơn hoặc bằng 3 >0
Vậy đa thức trên ko có nghiệm