K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Cho x, y, z thuộc [0;2] và x+ y+ z =3
Chứng minh rằng: x^2+ y^2+ z^2 bé hơn hoặc bằng 5

Ta có:

(2−x)(2−y)(2−z)≥0(2−x)(2−y)(2−z)≥0

⇔8−4(x+y+z)+2(xy+yz+zx)≥xyz⇔8−4(x+y+z)+2(xy+yz+zx)≥xyz

⇔2(xy+yz+zx)≥xyz+4≥4⇔2(xy+yz+zx)≥xyz+4≥4

⇒x2+y2+z2=(x+y+z)2−2(xy+yz+zx)≤9−4=5⇒x2+y2+z2=(x+y+z)2−2(xy+yz+zx)≤9−4=5

Dấu = xảy ra⇔(x,y,z)=(2;1;0)⇔(x,y,z)=(2;1;0) và các hoán vị

19 tháng 8 2017

đề phải là lớn hơn hoặc bằng chứ

20 tháng 2 2019

       lal + lbl >= la + bl
<=> a2 + 2lallbl + b2 >= a2 + 2ab + b2
<=> lallbl >= ab (đúng với mọi a; b thuộc Z)

15 tháng 12 2018

bạn nào giúp mình dc ko dạ

15 tháng 12 2018

A)x€{-6;-5;-4;-3;-2}

B)x€{-2;-1;0;1;2}

  C)x€{-1;0;1;2;3;4;5;6}

D)x€{-5;-4;-3;-2;-1;0;1;2;3;4;5;6}

17 tháng 1 2017

nghiêm

14 tháng 10 2021

ai mà bít

14 tháng 2 2020

Bài 2:

a, |x-1| -x +1=0

|x-1| = 0-1+x

|x-1| = -1 + x

 \(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)

 \(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)

 \(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)

x = 2-x

2x = 2

x = 2:2

x=1

b, |2-x| -2 = x

|2-x| = x+2

\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)

2-x = x+2

x+x = 2-2

2x = 0

x = 0

14 tháng 10 2021

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk