Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: `B = 1 + 3 + 3^2 + ... + 3^1991`
`= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^1989 + 3^1990 + 3^1992)`
`= 13 + 3^3 (1 + 3 + 3^2) + ... + 3^1989 (1 + 3 + 3^2)`
`= 13 + 3^3 . 13 + ... + 3^1989 . 13`
`= 13 (1 + 3^3 + ... + 3^1989)`
Vì \(13\left(1+3^3+...+3^{1989}\right)⋮13\) nên \(B⋮13\)
`B = 1 + 3 + 3^2 + ... + 3^1991`
= (1 + 3^4) + (3 + 3^5) + ... + (3^1987 + 3^1991)`
`= 82 + 3 (1 + 3^4) + ... + 3^1987 (1 + 3^4)`
`= 82 + 3 . 82 + ... + 3^1987 . 82`
`= 82 (1 + 3 + ... + 3^1987)`
Vì \(82\left(1+3+...+3^{1987}\right)⋮41\) nên \(B⋮41\)
`C = 3 + 3^2 + 3^3 + ... + 3^1000`
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{997}+3^{998}+3^{999}+3^{1000}\right)\)
`= 120 + 3^4 (3 + 3^2 + 3^3 + 3^4) + ... + 3^996 (3 + 3^2 + 3^3 + 3^4)`
`= 120 + 3^4 . 120 + ... + 3^996 . 120`
`= 120 (1 + 3^4 + ... + 3^996)`
Vì \(120\left(1+3^4+...+3^{996}\right)⋮120\) nên \(C⋮120\)
Ta có: \(C=3+3^2+3^3+...+3^{1000}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{997}+3^{998}+3^{999}+3^{1000}\right)\)
\(=120\left(1+3^5+...+3^{997}\right)⋮120\)(đpcm)