Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có dãy chia hết cho 2 : 2,4,6,...,100
Có số ' số chia hết cho 2 là :
(100-2):2+1=50 số
Ta có dãy chia hết cho 5 : 5,10,15,...,100
Có số ' số chia hết cho 5 là :
(100-5):5+1=20 số
2.
- n là số lẻ nên suy ra n+7 là chẵn
=> (n+4)(n+7) là số chẵn
- n là số chẵn suy ra n+4 là chẵn
=> (n+4)(n+7) là số chẵn
Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .
=> đpcm
Xét 2 trường hợp:
* Nếu n là số lẻ thì:
n + 3 là số chẵn
n + 6 là số lẻ
suy ra (n+3)(n+6) là số chẵn và chia hết cho 2
* Nếu n là số chẵn thì:
n + 3 là số lẻ
n + 6 là số chẵn
suy ra (n+3)(n+6) là số chẵn và chia hết cho 2
Vậy với mọi ...........
Nhớ k cho mình nhé! Thank you!!!
1a)
U(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
=> n + 1 \(\in\) {-15; -5; -3; -1; 1; 3; 5; 15}
=> n \(\in\) {-16; -6; -4; -2; 0; 2; 4; 14}
(Chú ý nếu chưa học số âm thì bỏ các số âm đi nhé)
1b) 12 / (n+5) là số tự nhiên thì n + 1 \(\in\) Ư(12)
Ư(12) = {1 ; 2; 3; 4; 6; 12}
=> n + 5 \(\in\) {1 ; 2; 3; 4; 6; 12}
=> n \(\in\) { 6 - 5; 12 - 5}
n \(\in\) { 1; 7}
2) (n + 3)(n + 6) xét 2 trường hợp của n
n chẵn => n + 6 chẵn => tích trên là số chẵn và chia hết cho 2
n lẻ => n + 3 chẵn => tích trên cũng là số chẵn và chia hết cho 2
Vậy trong mọi trường hợp tích trên đều là số chẵn và chia hết cho 2
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N(đpcm)
aaaaa=10000a+1000a+100a+10a+a=a(10000+1000+100+10=111111a=15873.7.a
=>aaaaaa chia hết cho 7
a) aaaaaa = a . 111111 = a . 7 . 15873 chia hết cho 7
b) a = 3
c) Ta có
( n + 3 ) ( n + 6 ) = ( n + 3 ) n + ( n + 3 ) 6
= n2 + 3n + 6n + 18
= n2 + 9n + 18
= n2 + 9( n + 2 )
Ta xét
Nếu n = 2k thì
n2 là số chẵn => chia hết cho 2
n + 2 là số chẵn => 9( n + 2 ) chia hết cho 2
=> n2 + 9( n + 2 ) chia hết cho 2 ( 1 )
Nếu n = 2k + 1 thì
n2 là số lẻ
n + 2 là số lẻ => 9( n + 2 ) là số lẻ
Do lẻ + lẻ = chẵn nên n2 + 9( n + 2 ) chia hết cho 2 (2)
Từ (1) và (2) suy ra với mọi n thì ( n + 3 ) ( n + 6 ) chia hết cho 2