Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> A = ( 3 - 32 ) + ( 33 - 34 ) + .... + ( 399 - 3100 )
=> A = 3.( 1 - 3 ) + 33.( 1 - 3 ) + ..... + 399.( 1 - 3 )
=> A = 3.( - 2 ) + 33.( - 2 ) + .... + 399.( - 2 )
=> A = - 2 .( 3 + 33 + ..... + 399 )
Vì - 2 ⋮ 2 => A ⋮ 2 ( đpcm )
\(C=3+3^2+3^3+...+3^{100}=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)=3.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)=3.40+...+3^{97}.40=\left(3+...+3^{97}\right).40\) chia hết cho 40
A= 75×[(42011 - 1)/3] +25
A = 25×(42011- 1) +25
A= 25×4×42010 - 25 +25
A= 100 × 42010
A chia hết cho 100
Bài 2:
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^9\left(1+5\right)\)
\(=6\left(5+5^3+...+5^9\right)⋮6\)
Ta có : C = ( 3 + 32 + 33 + 34 ) + ( 35 + 36 + 37 + 38 ) + .... + ( 397 + 398 + 399 + 3100 )
=> C = 3.( 1 + 3 + 3.3 + 33 ) + 35.( 1 + 3 + 3.3 + 33 ) + .... + 397.( 1 + 3 + 3.3 + 33 )
=> C = 3. 40 + 35.40 + .... + 397.40
=> C = 40.( 3 + 35 + 39 + .... + 397 )
Vì 40 ⋮ 40 nên C ⋮ 40 ( đpcm )
minh chi lam dc cau a thoi nha nhung hay t i c k cho minh
3 + 32 = 12 chia het cho 4 3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 32 ] + ....+38 . [ 3 + 32 ]
=30 . 12 + 32 . 12 +.....+ 38 . 12 = 12.[30 + 32 +....+ 38 ]
vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4
Ta có: \(3+3^2+3^3+3^4+...+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{99}\right)⋮4\)
A = 31 + 32 + 33 + ... + 3100
Xét dãy số: 1; 2; 3; ...; 100
Dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100 (số hạng)
Vì 100 : 2 = 50
Nhóm hai số hạng liên tiếp của A vào nhau ta được:
A = (31 + 32) + (32 + 33) + .. + (399 + 3100)
A = 3.(1 + 3) + 33(1 +3) + .. + 399.(1+ 3)
A = (1+ 3).(3 + 33 + ..+ 399)
A = 4.(3 + 33 + ... + 399) ⋮ 4 (đpcm)