K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Gọi d là ƯC(2n+5,5n+12) 

=> 2n + 5 \(⋮\)d => 5(2n+5) \(⋮\)d <=> 10n + 25 \(⋮\)d

và 5n+12 \(⋮\)d => 2(5n+12)\(⋮\)d <=> 10n + 24 \(⋮\)d

=> 10n + 25 - ( 10n + 24 ) \(⋮\)d => 1 \(⋮\)d <=> d = 1 

Vậy 2n+5 và 5n+12 là 2 số nguyên tố cùng nhau

3 tháng 12 2015

Gọi  d =(A=2n+7; B=5n+17)

=. A ; B chia hết cho d

=>5A - 2B = 10n + 35 - 10n - 34 = 1 chia hết cho d

=> d =1

Vậy  (A;B) =1 

26 tháng 3 2020

Đặt : ( 2n + 7 ; 5n + 17 ) = d ( d thuộc N )

=> \(\hept{\begin{cases}2n+7⋮d\\5n+17⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}5\left(2n+7\right)⋮d\\2\left(5n+17\right)⋮d\end{cases}}\)

=> \(5\left(2n+7\right)-2\left(5n+17\right)⋮d\)

=> \(1⋮d\)

=> d = 1

Vậy ( 2n + 7 ; 5n + 17 ) = 1 ; hay 2n + 7 và 5n + 17 là hai số nguyên tố cùng nhau.

a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)

\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)

Xét 2 biểu thức :

\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)

\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)

\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.

20 tháng 10 2015

1.1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1} = 225 
<=> (2n.2n):4 = 225 
<=> n2=225 
=> n = 15 và n = -15 
Vì n thuộc N* nên n = 15 thỏa mãn

20 tháng 10 2015

Giải: 
1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1}/2 = 225 
<=> (2n.2n):4 = 225 
<=> n^2=225 
suy ra n = 15 và n = -15 
do n thuộc N* nên n = 15 thỏa mãn

gọi d > 0 là ước số chung của 7n+10 và 5n+7 
=> d là ước số của 5.(7n+10) = 35n +50 
và d là ước số của 7(5n+7)= 35n +49 
mà (35n + 50) -(35n +49) =1 
=> d là ước số của 1 => d = 1 
vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

tích nha

22 tháng 11 2016

gọi d là ước chung lớn nhất củaA=3n+5vàB=5n+8

=>3n+5 chia hết cho d và 5n+8 chia hết cho d

=> 5 A chia hết cho d và 3 B chia hết cho d

=> 5A-3B = 15n+25-15n-24 chia hết cho d 

hay 1 chia hết cho d => d=1 => dpcm

19 tháng 11 2014

nếu ý bạn là : 5*n = 5xn hoặc 5n thì giải như sau :

a) ta có 5n + 12 = 5n + 10 + 2 = 5(n + 2 ) + 2 vì đã có 5 ( n+ 2 ) chia hết cho n + 2 nên chỉ cần 2 chia hết cho n+2 là được .

vậy chỉ có thể chọn n = 0

b) cũng như cách phân tích như ở phần a ta có : 5n + 7 = 5n + 5 + 2 = 5 ( n + 1 ) + 2     (1)

                                                 tương tự ta có    : 2n + 3 = 2n + 2 + 1 = 2( n + 1 ) + 1       (2)

xét (1 )  ta có 5 (n +1 ) +2 = 5 ( n + 1 ) + (1 + 1) => nếu n = 1 thì (1) có Ư là :   2 và 1

xét (2) ta có 2 ( n + 1 ) + 1 = 2( n + 1 ) + ( 0 + 1 )=>nếu n = 0 thi (2) cóƯ là :  1

vậy (1) và (2) chỉ có 1 Ư chung là 1 nên chúng là 2 số NT cùng nhau 

c) 5n + 12 = 5n + 10 + 2 = 5 ( n + 2 ) + 2 ( đpcm )

5 tháng 10 2016

giỏi đấy mình cũng làm như thế

21 tháng 10 2023

Đặt \(d=ƯCLN\left(5n+4;2n+5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2\left(5n+4\right)⋮d\\5\left(2n+5\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left[5\left(2n+5\right)-2\left(5n+4\right)\right]⋮d\)

\(\Rightarrow\left(10n+25-10n-8\right)⋮d\)

\(\Rightarrow17⋮d\)

\(\Rightarrow d=17\) hoặc \(d=1\)

Mà \(2n+5\) là số lẻ nên \(d\ne17\)

Vậy \(d=1\) hay mọi số tự nhiên n thì các số \(5n+4;2n+5\) là số nguyên tố cùng nhau.

26 tháng 10 2021

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau