Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Ngô Văn Nam - Toán lớp 6 - Học toán với OnlineMath
\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
=> \(3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
=> \(C+3C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> \(4C=1-\frac{100}{3^{100}}-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
Đặt: \(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
=> \(3B=-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
=> \(B+3B=-1-\frac{1}{3^{99}}\)
=> \(4B=-1-\frac{1}{3^{99}}\)
=> \(B=-\frac{1}{4}-\frac{1}{4}.\frac{1}{3^{99}}\)
=> \(4C=1-\frac{100}{3^{100}}+B=1-\frac{100}{3^{100}}-\frac{1}{4}-\frac{1}{4}.\frac{1}{3^{99}}\)
=> \(4C=\frac{3}{4}-\frac{100}{3^{100}}-\frac{1}{4.3^{99}}< \frac{3}{4}\)
=> \(C< \frac{3}{16}\)
\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow C+3C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow4C< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}=D\)
Xét \(D=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(\frac{D}{3}=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(\Rightarrow D+\frac{D}{3}=1-\frac{1}{3^{100}}< 1\Rightarrow\frac{4D}{3}< 1\Rightarrow D< \frac{3}{4}\)
\(\Rightarrow4C< D< \frac{3}{4}\Rightarrow C< \frac{3}{16}\)
Đặt:
\(4C=3-\frac{203}{3^{100}}.\)
Mà \(3-\frac{203}{3^{100}}< 3\)
\(\Rightarrow4C< 3\)
\(\Rightarrow C< \frac{3}{4}\left(đpcm\right).\)
Vậy \(C< \frac{3}{4}.\)
Chúc bạn học tốt!
A = \(\frac{1}{3}\) + \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) + \(\frac{4}{3^4}\) +....+ \(\frac{100}{3^{100}}\)
3A = 1 + \(\frac{2}{3}\) + \(\frac{3}{3^2}\) + \(\frac{4}{3^3}\) +...+ \(\frac{100}{3^{99}}\)
\(\Rightarrow\) 3A - A = 1+ \(\left(\frac{2}{3}-\frac{1}{3}\right)\) + \(\left(\frac{3}{3^2}-\frac{2}{3^2}\right)\) + ... + \(\left(\frac{100}{3^{99}}-\frac{99}{3^{99}}\right)\) - \(\frac{100}{3^{100}}\)
2A =1+ \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
Đặt B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{99}}\)
\(\Rightarrow\) 3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(\Rightarrow\) 2B = \(1-\frac{1}{3^{99}}\)
\(\Rightarrow\) \(B=\left(1-\frac{1}{3^{99}}\right):2\)
Thay 2A = 1 + \(\frac{1}{2}\) - \(\left(1-\frac{2}{3^{99}}\right)\) - \(\frac{100}{3^{100}}\) < 1 + \(\frac{1}{2}\) = \(\frac{3}{2}\)
Vậy A < \(\frac{3}{4}\)
Vậy:...........
Đặt :
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+........+\frac{100}{3^{100}}\)
\(\Leftrightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+.....+\frac{100}{3^{99}}\)
\(\Leftrightarrow3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+....+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+....+\frac{100}{3^{100}}\right)\)
\(\Leftrightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+........+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt : \(H=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\) \(\Leftrightarrow2A=H-\frac{100}{3^{100}}\)
\(\Leftrightarrow3H=3+1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}\)
\(\Leftrightarrow3H-H=\left(4+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\right)\)
\(\Leftrightarrow2H=3-\frac{1}{3^{99}}\)
\(\Leftrightarrow H=\frac{3-\frac{1}{99}}{2}\)
\(\Leftrightarrow2A=\frac{3-\frac{1}{3^{99}}}{2}-\frac{100}{3^{100}}\)
\(\Leftrightarrow A=\frac{1-\frac{1}{3^{99}}}{2}-\frac{100}{2.3^{100}}\)
\(\Leftrightarrow A< \frac{3}{4}\left(đpcm\right)\)
Mà sao bạn tức giận thế nhỉ, mọi khi có thể đâu. Khổ thật.
Nguyễn Văn Đạt
Lâu rồi ko làm dạng này nên ko chắc đâu nhé!
Ta có: \(3C=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(2C=3C-C=1+\frac{2-1}{3}+\frac{3-2}{3^2}+....+\frac{100-99}{3^{99}}-\frac{100}{3^{100}}\)
\(2C=\left(1-\frac{100}{3^{100}}\right)+\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\right)\)
Xét \(A=\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\right)\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(2A=1-\frac{1}{3^{99}}< 1\Rightarrow A< \frac{1}{2}\) (1)
Và \(1-\frac{100}{3^{100}}< 1\) (2) (điều này hiển nhiên)
Từ (1) và (2) suy ra \(2C< 1+\frac{1}{2}=\frac{3}{2}\Rightarrow C< \frac{3}{4}^{\left(đpcm\right)}\)
Ok ko?