K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

câu 1. tìm số tự nhiên x sao cho 34* chia hết cho 3 mà không chia hết cho 9.câu 2. tìm tập hợp các số tự nhiên n vừa chia hết cho 2 vừa chia hết cho 5và 136<n<182câu 3. cho tổng A=12+15+21+x(x thuộc n). tìm x để A chia hết cho 3câu 4. khi chia số tự nhiên a cho 12 được số dư là 10. hỏi a có chia hết cho 2 khôngcâu 5. khi chia số tự nhiên  a cho 12 ta được số dư là 9. hổi a có chia hết cho 3 không câu 6. tìm...
Đọc tiếp

câu 1. tìm số tự nhiên x sao cho 34* chia hết cho 3 mà không chia hết cho 9.

câu 2. tìm tập hợp các số tự nhiên n vừa chia hết cho 2 vừa chia hết cho 5và 136<n<182

câu 3. cho tổng A=12+15+21+x(x thuộc n). tìm x để A chia hết cho 3

câu 4. khi chia số tự nhiên a cho 12 được số dư là 10. hỏi a có chia hết cho 2 không

câu 5. khi chia số tự nhiên  a cho 12 ta được số dư là 9. hổi a có chia hết cho 3 không 

câu 6. tìm số tự nhiên có 2 chữ số, các chữ số giống nhau, biết số đó chia hết cho 2, còn chia cho 5 thì dư4

câu 7. chứng minh rằng ab+ba chia hết cho 11

         chứng minh aa-a-a chia hết cho 9

câu 8. tìm số tự nhiên n biết

        a)2^n:4=16        b)6*2^n+3*2^n=9*2^9               c)25 bé hơn hoặc bằng5^n bé hơn 3125

câu 9. chứng tỏ; 2^15+4^24 chia hết cho 2

câu 10. chứng tỏ rằng nếu (ab+cd)chia hết cho 99

(em sẽ like cho bác nào xong 10 câu nhanh nhất, ghi cả cách làm nữa)

0

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!