K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

Ta có :

\(2007^{2008}=\left(2007^4\right)^{502}=\left(...1\right)^{502}=\left(...1\right)\)

\(2007^{2001}=\left(2007^4\right)^{500}.2007=\left(...1\right)^{500}.2007=\left(...7\right)\)

Vậy 

20 tháng 5 2018

2007^2008 - 2007^2001 = 2007^2001( 2007^7 - 1 ) = 2007^2001 . ( ...3 - 1 ) = 2007^2001 . ( ...2 ) 

Ma 2007^2001 = ( 2007^4 )^500 . 2007 = ( ...1)^500 . 2007 = ...(7)

=> 2007^2001 . ( ...2 ) = (...7 ).( ...2 ) = ( ...4)

Vay gia tri cua bieu thuc tren ko bang 10

16 tháng 5 2018

????????????

16 tháng 5 2018

mk ko hiểu đề

27 tháng 2 2017

Ta có

A = 112009 + 112008 + 112007 +.....+112001 + 112000

A = ( 112009 + 112008 + 112007 + 112006 + 112005) + (112004 + 112003 + 112002 + 112001 + 112000)

A = 112005(114 + 113 + 112 + 111 + 1) + 112000(114 + 113 + 112 + 111 + 1)

A = 112005.16015 + 112000.16105

=> A \(⋮\) 5

=> đpcm

Tk nha

ta có :

A=112009 + 112008 + ... + 112001 + 112000 ( có 10 số hạng )

A=(112009 + 112008 + 112007 + 112006 + 112005) + (112004 + 112003 + 112002 + 112001 + 112000) (có 2 nhóm)

A= 112005(114+113+112+11+1)+ 112000(114+113+112+11+1)

A=112005.16105+112000.16105

\(\Rightarrow A⋮5\)

đpcm

16 tháng 8 2015

=1+1/2001+1+1/2002+1+1/2003+...+1+1/2008=8+1/2001+1/2002+1/2003+...+1/2008>8

8 tháng 5 2018

\(\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)

24 tháng 2 2015

minh lam duoc roi . cach viet phan so ban bam vao o mau vang o cuoi trang .cu di con chuot xuong cuoi trang thi thay 1 o vang , vao xem huong dan la biet ngay ma.

29 tháng 10 2016

A=B

7 tháng 8 2016

Ta có: A=\(\frac{10^{2006}+1}{10^{2007}+1}\)

=>10A=\(\frac{10\left(10^{2006}+1\right)}{10^{2007}+1}=\frac{10^{2007}+10}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)             

Ta có: B=\(\frac{10^{2007}+1}{10^{2008}+1}\)

=>10B=\(\frac{10\left(10^{2007}+1\right)}{10^{2008}+1}=\frac{10^{2008}+10}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)  

Mà \(\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}\)        (do 102007+1<102008+1)

=>\(1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}\)

=>10A>10B

=>A>B

7 tháng 8 2016

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

=> \(B=\frac{10^{2007}+1}{10^{2008}+1}< \frac{10^{2007}+1+9}{10^{2008}+1+9}\)

=> \(B< \frac{10^{2007}+10}{10^{2008}+10}\)

=> \(B< \frac{10.\left(10^{2006}+1\right)}{10.\left(10^{2007}+1\right)}\)

=> \(B< \frac{10^{2006}+1}{10^{2007}+1}=A\)

20 tháng 3 2016

A>b

Cách làm: Bạn tách |B ra rồi so sánh với từng ps ở A, sau đó Kết luận