K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2024

\(x\left(x-4\right)+5=x^2-4x+5\\ =x^2-4x+4+1\\ =x^2-2.2x+2^2+1\\ =\left(x-2\right)^2+1\)

Mà \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1>0\)

\(\Leftrightarrow x\left(x-4\right)+5>0\forall x\)

30 tháng 7 2024

Ta có:

\(x\left(x-4\right)+5\\ =x^2-4x+5\\ =\left(x^2-4x+4\right)+1\\ =\left(x-2\right)^2+1\)

Ta có: `(x-2)^2>=0` với mọi x 

`=>(x-2)^2+1>=1>0` với mọi x 

Hay `x(x-4)+5` luôn lớn hơn không 

4 tháng 1 2023

a) `P=x^2-4x+5`

`=(x^2-4x+4)+1`

`=(x^2-2.x.2+2^2)+1`

`=(x-2)^2+1`

Vì `(x-2)^2 >=0 ` nên `(x-2)^2+1 >=1 >0` với mọi `x`

`<=> (x-2)^2+1 >0` với mọi `x`

Vậy ta có điều phải chứng minh.

``

b) `P=x^2-2x+2`

`=(x^2-2x+1)+1`

`=(x^2-2.x.1+1^2)+1`

`=(x-1)^2+1`

Vì `(x-1)^2 >=0` với mọi `x`

`=>(x-1)^2+1 >=1 >0` với mọi `x`

`<=> (x-1)^2+1 >0` với mọi `x`

Vậy ta có điều phải chứng minh.

4 tháng 1 2023

\(a,P=x^2-4x+5\)

\(=x^2-2.x.2+4+1\)

\(=\left(x-2\right)^2+1\)

Vì \(\left(x-2\right)^2\ge0\forall x\) mà \(1>0\)

\(\Rightarrow\left(x-2\right)^2+1>0\forall x\)

Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)

_____________________________________

\(b,P=x^2-2x+2\)

\(=x^2-2.x.1+1+1\)

\(=\left(x-1\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0\forall x\) mà \(1>0\)

\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)

Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)

27 tháng 5 2016

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\)

<=> \(1+\frac{a}{b}+\frac{b}{a}+1\ge4\)

<=> \(\frac{a^2+b^2}{ab}\ge4-1-1=2\)

<=> \(a^2+b^2\ge2ab\)

<=> \(a^2-2ab+b^2\ge0\)

<=> \(\left(a-b\right)^2\ge0\) ( điều này đúng, theo tính chất luỹ thừa bậc chẵn nên => đpcm)

Dấu bằng xảy ra <=> a=b

27 tháng 5 2016

BĐT<=>a+b/ab>=4/a+b 
<=>(a+b)^2>=4ab 
<=>(a-b)^2>=0

29 tháng 11 2016

\(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{2^2}+\frac{3}{4}.\)

\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

pp bien doi ve tong binh phuong 

29 tháng 11 2016

có x2  - 2x +1 = ( x-1)\(\ge\) 0

6 tháng 10 2019

1) \(\left(x-3\right)\left(x-5\right)+2\)

\(=x^2-8x+15+2\)

\(=\left(x^2-8x+16\right)+1\)

\(=\left(x-4\right)^2+1\)

Vì \(\left(x-4\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-4\right)^2+1\ge1>0;\forall x\)

Vậy....

2) tương tự

6 tháng 10 2019

\(1.\left(x-3\right)\left(x-5\right)+2\)

\(=x^2-8x+15+2\)

\(=x^2-2.4x+16+1\)

\(=\left(x-4\right)^2+1\)

Do \(\left(x-4\right)^2\ge0\)nên \(\left(x-4\right)^2+1\ge1\)

hay \(\left(x-3\right)\left(x-5\right)+2>0\)

30 tháng 7 2017

Vậy thì n thuộc tập hợp nào bạn?

30 tháng 7 2017

n e N nha pạn giải giúp mik vs

9 tháng 4 2020

Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976

               = [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976

                = ( x- y - 6 )2 + 5 (y-1)2 + 1976

Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0 

Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y

9 tháng 4 2020

Q=x2+6y2−2xy−12x+2y+2017

Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976

=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976

=[(x-y)2-12(x-y)+36]+5(y-1)2+1976

=(x-y-6)2+5(y-1)2+1976

do (x-y-6)2 ≥ 0 ∀ x,y

(y-1)2 ≥ 0 ∀ y

=> (x-y-6)2+5(y-1)2+1976 ≥ 1976

=> Q≥ 1976

=> MinA=1976 khi

y-1=0

=>y=1

x-y-6=0

=>x-1-6=0

=>x-7=0

=>x=7

Vậy GTNN của Q =1976 khi x=7 và y=1

DD
3 tháng 8 2021

\(P=x+y+\frac{9}{x}+\frac{16}{y}=x+\frac{9}{x}+y+\frac{16}{y}\ge2\sqrt{x.\frac{9}{x}}+2\sqrt{y.\frac{16}{y}}=14\)

Dấu \(=\)khi \(x=3,y=4\).

DD
3 tháng 8 2021

Có thể đề bài đúng phải là điều kiện \(x+y\le4\).

Ta có: 

\(P=x+y+\frac{9}{x}+\frac{16}{y}=\frac{49}{16}x+\frac{9}{x}+\frac{49}{16}y+\frac{16}{y}-\frac{33}{16}\left(x+y\right)\)

\(\ge2\sqrt{\frac{49}{16}x\times\frac{9}{x}}+2\sqrt{\frac{49}{16}y\times\frac{16}{y}}-\frac{33}{16}\times4\)

\(=\frac{21}{2}+14-\frac{33}{4}=\frac{65}{4}\)

Dấu \(=\)khi \(\hept{\begin{cases}\frac{49}{16}x=\frac{9}{x}\\\frac{49}{16}y=\frac{16}{y}\\x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{12}{7}\\y=\frac{16}{7}\end{cases}}\).