K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2023

a) `P=x^2-4x+5`

`=(x^2-4x+4)+1`

`=(x^2-2.x.2+2^2)+1`

`=(x-2)^2+1`

Vì `(x-2)^2 >=0 ` nên `(x-2)^2+1 >=1 >0` với mọi `x`

`<=> (x-2)^2+1 >0` với mọi `x`

Vậy ta có điều phải chứng minh.

``

b) `P=x^2-2x+2`

`=(x^2-2x+1)+1`

`=(x^2-2.x.1+1^2)+1`

`=(x-1)^2+1`

Vì `(x-1)^2 >=0` với mọi `x`

`=>(x-1)^2+1 >=1 >0` với mọi `x`

`<=> (x-1)^2+1 >0` với mọi `x`

Vậy ta có điều phải chứng minh.

4 tháng 1 2023

\(a,P=x^2-4x+5\)

\(=x^2-2.x.2+4+1\)

\(=\left(x-2\right)^2+1\)

Vì \(\left(x-2\right)^2\ge0\forall x\) mà \(1>0\)

\(\Rightarrow\left(x-2\right)^2+1>0\forall x\)

Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)

_____________________________________

\(b,P=x^2-2x+2\)

\(=x^2-2.x.1+1+1\)

\(=\left(x-1\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0\forall x\) mà \(1>0\)

\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)

Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)

24 tháng 7 2021

\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1\ge1>0\forall x\)

Ta có: \(x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)

20 tháng 4 2019

P = x2 - 2x + 2 = (x – 1)2 + 1

Do (x – 1)2 ≥ 0 ∀x nên (x – 1)2 + 1 ≥ 1 ∀x

Vậy P luôn lớn hơn 0 với mọi x.

4 tháng 2 2018

\(P=x^2-2x+2\)

\(P=x^2-2x+1+1\)

\(P=\left(x-1\right)^2+1\)

Ta thấy \(\left(x-1\right)^2\ge0\)nên \(\left(x-1\right)^2+1>0\)

4 tháng 2 2018

Ta có:

\(P=x^2-2x+2\)

\(=\left(x^2-2x+1\right)+1\)

\(=\left(x-1\right)^2+1\)

Vì  \(\left(x-1\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)

19 tháng 12 2021

\(P=\left(x^2-10x+25\right)+6=\left(x-5\right)^2+6\ge6>0,\forall x\left(đpcm\right)\)

19 tháng 12 2021

\(P=\left(x-5\right)^2+6>0\)

25 tháng 6 2021

a) \(a^2-6a+10=\left(a^2-6a+9\right)+1=\left(a-3\right)^2+1\ge1\left(\forall a\right)\)

Dấu "=" xảy ra khi a = 3

b) \(4a^4-4a^3+a^2=a^2\left(4a^2-4a+1\right)=\left[a\left(2a-1\right)\right]^2\ge0\left(\forall a\right)\)

Dấu "=" xảy ra khi: \(\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

c) \(x^3+y^3=\frac{1}{3}\left(3x^3+3y^3\right)\)

\(=\frac{1}{3}\left[\left(x^3+x^3+y^3\right)+\left(x^3+y^3+y^3\right)\right]\ge\frac{1}{3}\left(3x^2y+3xy^2\right)=x^2y+xy^2\) (Cauchy)

Dấu "=" xảy ra khi: x = y

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

1 tháng 8 2017

Ta có : 3x2 + 12xy+ 12y2

= 3(x2 + 4xy + 4y2)

= 3(x + 2y)2

Mà (x + 2y)\(\ge0\forall x\)

Nên 3x2 + 12xy+ 12y\(\ge0\forall x\)

13 tháng 7 2015

a) x2-6x+10

=x2-6x+9+1

=(x-3)2+1 \(\ge\) 0 (vì (x-3)2\(\ge\)0)

vậy  x^2-6x+10 luôn luôn dương với mọi x

4x-x2-5

=-x2+4x-4-1

=-(x2-4x+4)-1

=-(x-2)2-1\(\le\)-1 ( vì -(x-2)2\(\le\)0 )

vậy 4x-x^2-5 luôn luôn âm với mọi x

22 tháng 9 2016

A=x^2+x+1 luon luon dương với mọi x