Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: (2n+5;3n+7)=d
2n+5=3(2n+5)=6n+15 chc d
3n+7=2(3n+7)=6n+14 chc d
1 chia hết cho d
=> d=1 vậy 2n+5 và 3n+7 nguyên tố cùng nhau
Gọi d là ước chung nguyên tố (d thuộc N) của 2n+5 và n+2, ta có:
(2n+5) chia hết cho d và (n+2) chia hết cho d
Từ (n+2) chia hết cho d => 2(n+2) cũng chia hết cho d
Ta có: (2n+5) chia hết cho d và 2(n+2) chia hết cho d => (2n+5) - 2(n+2) = 1 chia hết cho d
=> d = 1 => 2n+5 và n+2 nguyên tố cùng nhau
Gọi d=ƯCLN(2n+5;4n+8)
=>4n+10-4n-8 chia hết cho d
=>2 chia hết cho d
mà 2n+5 lẻ
nên d=1
=>ĐPCM
Gọi d là là ước chung lớn nhất của ( n+3) và ( 2n+5)
Có (n+3) chia hết cho d.Suy ra (n+3)x2 chia hết cho d= (2n+6) chia hết cho d
Có (2n +5) chia hết cho d. Suy ra (2n+ 5) chia hết cho d
Suy ra : (2n+6) - (2n+5) chia hết cho d
2n+6 - 2n-5 chia hết cho d
1 chia hết cho d
Có chia hết cho d suy ra d thuộc{ 1:-1}
Vì d là số tự nhiên nên d =1
Vậy ( n+3) và (2n+5) là số nguyên tố cùng nhau
CHÚC BẠN HỌC GIỎI
Gọi d là USC của n+2 và 2n+5 suy ra
\(n+2⋮d\Rightarrow2\left(n+2\right)=2n+4⋮d\)
\(2n+5⋮d\)
\(\Rightarrow\left(2n+5\right)-\left(2n+4\right)=1⋮d\Rightarrow d=1\)
Kết luận: n+2 và 2n+5 là số nguyên tố cùng nhau