K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

- Gỉa sử \(x^2+1\) chia hết cho 3 .

=> \(x^2+1\in B_{\left(3\right)}\)

=> \(x^2+1\in\left\{\pm3,\pm6,\pm9,\pm12,\pm15,....\right\}\)

=> \(x^2\in\left\{2,-4,5,-7,8,-10,....\right\}\)

\(x\in N\) .

=> \(x^2\in\left\{2,5,8,11,14,...\right\}\)

=> \(x\in\left\{\sqrt{2},\sqrt{5},\sqrt{8},...\right\}\)

\(x\in N\) .

=> \(x\in\left\{\varnothing\right\}\)

Vậy không tồn tại x để \(x^2+1\) chia hết cho 3 hay \(x^2+1\) không chia hết cho 3 với mọi \(x\in N\) .

12 tháng 8 2015

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

6 tháng 1 2017

tách hết ra đk đấy

21 tháng 10 2019

n2+n+2 = n(n+1)+2

n sẽ có dạng n=3k; n=3k+1; n=3k+2 (k\(\in Z\))

 n=3k => n(n+1) = 3k(3k+1) chia hết cho 3 nên 3k(3k+1)+2 không chia hết cho 3

n=3k +1 => n2+n+2= (3k+1)2 +3k+3; dế thấy 3k+3 chia hết cho 3 nhưng (3k+1)2 không chia hết cho 3 nên n2 +n+2 không chia hết cho 3

n=3k+2 => n(n+1) = (3k+1)(3k+3)=3(3k+1)(k+1) chia hết cho 3 nên (3k+2)(k+3)+2 không chia hết cho 3

vậy với mọi n đều không chia hết
 

28 tháng 9 2016

Giả sử nvà n là số lẻ

Ta có n2 = n.n 

Vì n lẻ nên n.n là số lẻ 

=> n2 lẻ (trái giả thiết)

Vậy n2 lẻ thì n lẻ

bài còn lại làm tương tự

28 tháng 9 2016

1/ Giả sử \(n^2\) là số lẻ nhưng n là một số chẵn.

Khi đó, n = 2k (k thuộc N*)

Ta có : \(n^2=\left(2k\right)^2=4k^2\) luôn là một số chẵn, vậy trái với giả thiết.

Vậy điều phản chứng sai. Ta có đpcm

2/ Tương tự.