Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.
a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;
\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố )
Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)
mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ
\(\Leftrightarrow a_1;a_2;..a_m\) chẵn
\(\Leftrightarrow n\) là số chính phương
=> n luôn có dạng \(n=l^2\)
Mặt khác \(x_1;x_2;..x_m\) là số nguyên tố
Nếu \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ
<=> r = 0 nên n = 2r.l2 đúng (1)
Nếu \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\)
TH1 : \(a_k\) \(⋮2\)
\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)
=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2)
TH2 : ak lẻ
Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\) nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết)
Nếu \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)
Từ (1);(2);(3) => ĐPCM
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Lời giải:
Vì $m,n$ là hai số nguyên tố cùng nhau nên theo định lý Euler ta có:
\(\left\{\begin{matrix} m^{\varphi(n)}\equiv 1\pmod n\\ n^{\varphi (m)}\equiv 0 \pmod n\end{matrix}\right.\)
\(\Rightarrow m^{\varphi (n)}+n^{\varphi (m)}\equiv 1\pmod n\) (1)
Tương tự:
\(\left\{\begin{matrix} m^{\varphi (n)}\equiv 0\pmod m\\ n^{ \varphi (m)}\equiv 1\pmod m\end{matrix}\right.\)
\(\Rightarrow m^{\varphi (n)}+n^{\varphi (m)}\equiv 1\pmod m\) (2)
Từ (1) và (2) ta có thể đặt \(m^{\varphi (n)}+n^{\varphi (m)}=mk+1=nt+1\)
(trong đó \(k,t\in\mathbb{N}\) )
\(\Rightarrow mk=nt\Rightarrow mk\vdots n\). Mà (m,n) nguyên tố cùng nhau nên \(k\vdots n\Rightarrow k=nu (u\in\mathbb{N})\)
Khi đó:
\(m^{\varphi (n)}+n^{\varphi (m)}=mnu+1\Leftrightarrow m^{\varphi (n)}+n^{\varphi (m)} \equiv 1\pmod {mn}\)
Ta có đpcm.
\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(2m^2+m+3\right)\)
\(\Delta'=-m^2+m-2\left(1\right)\)
\(\Delta< 0\forall m\) bởi vì:
\(\left\{{}\begin{matrix}a_{\left(1\right)}< 0\\\Delta_{\left(1\right)}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< 0\left(đúng\right)\\1^2-4\left(-1\right)\left(-2\right)< 0\left(đúng\right)\end{matrix}\right.\)
Lời giải:
Xét 1 số $m$ là hợp số:
TH1: $m=4$ thì $(m-1)!+1$ không chia hết cho $m$
TH2: $m>4$, ta chứng minh được $(m-1)!\vdots m$.
Cách chứng minh: Câu hỏi của Phạm Phương Anh - Toán lớp 9 | Học trực tuyến
Do đó $(m-1)!+1$ không thể chia hết cho $m$ vì $(1,m)=1$
Tóm lại, với $m$ là hợp số thì $(m-1)!+1\not\vdots m$. Do đó nếu $(m-1)!+1\vdots m$ thì $m$ phải là số nguyên tố. (đpcm)
tthsvtkvtmNguyễn Văn Đạt