K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

Nếu n lẻ thì n^3 và n là số lẻ 

=> n^3 + n + 2 là số chẵn mà n lớn hơn hoặc bằng 1

=> n^3 + n + 2 là hợp số (1)

Nếu n chẵn thì n^3 và n là số chẵn 

=> n^3 + n+2 là hợp số (2)

Từ (1) và (2) => n^3+n+2 là hợp số (đpcm!)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

15 tháng 12 2016

bạn là otaku

5 tháng 1 2017

\(a\in N\Rightarrow\hept{\begin{cases}a^2+a+1\in N\\a^2+a+2\in N\end{cases}}\)

Dễ thấy a2+a+1 và a2+a+2 là 2 số tự nhiên liên tiếp, trong 2 số này có 1 số chia hết cho 2 

=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)\) là số chẵn

=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) cũng là số chẵn

=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) là hợp số (đpcm)

15 tháng 1 2017

Số 2 là số lẻ => dpcm

5 tháng 10 2019

Ta có n3 - n=n( n2-1)=(n-1)n(n+1)

Mà tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6

5 tháng 10 2019

A = n3 – n (có nhân tử chung n)

= n(n2 – 1) (Xuất hiện HĐT (3))

= n(n – 1)(n + 1)

n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên

+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2

+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3

Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.

-Chanh-

1 tháng 12 2016

Gọi phương trình đã cho là f(x) 

Giả sử x = t là nghiệm hữu tỷ của f(x) thì: f(x) = (x - t)Q(x)

f(0) = a0 = - t.Q(x) (1)

Và f(1) = a2k + a2k-1 + ... + a1 + a0 = (1 - t).Q(x) (2)

Từ (1) ta có a0 là số lẻ nên t phải là số lẻ

Từ (2) ta thấy rằng a2k + a2k-1 + ... + a1 + alà tổng của 2k + 1 số lẻ nên là số lẻ. Từ đó ta thấy rằng (1 - t) là số lẻ

Mà (1 - t) là hiệu hai số lẻ nên không thể là số lẻ (mâu thuẫn)

Vậy f(x) không có nghiệm nguyên

sao lâu thế mọi n

11 tháng 3 2016

muốn nhanh hải từ từ chứ! :D

1. Vì $n^3$ và $n$ cùng tính chẵn lẻ nên\(n^3+n+2\) chia hết cho 2.

2. Chắc đề là a^2+b^2+c^2=a^3+b^3+c^3=1.

4 tháng 10 2018

Đặt \(n^2-n+2=a^2\left(a\in N\right)\)

\(\Rightarrow4n^2-4n+8=\left(2a\right)^2\)

\(\Rightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)

\(\Rightarrow7=\left(2a-2n+1\right)\left(2a+2n-1\right)\)

Vì \(2a+2n-1>2a-2n+1;2a+2n-1>0\) (vì n thuộc N*)

\(\Rightarrow\hept{\begin{cases}2a+2n-1=7\\2a-2n+1=1\end{cases}\Rightarrow4n-2=6\Rightarrow}n=2\)

Vậy n=2 thì ...