Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do n lẻ \(\Rightarrow n=2k+1\)
Đặt \(a=7^n+24=7^{2k+1}+24=7.49^k+24\)
Do \(\left\{{}\begin{matrix}49\equiv1\left(mod4\right)\\7\equiv3\left(mod4\right)\\24\equiv0\left(mod4\right)\end{matrix}\right.\) \(\Rightarrow7.49^k+24\equiv3\left(mod4\right)\)
Mà các số chính phương chia 4 chỉ có các số dư 0 hoặc 1
\(\Rightarrow a\) không thể là SCP hay \(7^n+24\) ko là SCP với mọi số tự nhiên lẻ n
Lời giải:
Xét $n$ lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.
Khi đó:
$3^n+4=3^{2k+1}+4\equiv (-1)^{2k+1}+4\equiv -1+4\equiv 3\pmod 4$
Xét $n$ chẵn. Đặt $n=2k$ với $k$ tự nhiên.
$3^n+4=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$
Vậy $3^n+4$ chia $4$ dư $3$ hoặc chia $8$ dư $5$ với mọi $n$ tự nhiên.
$\Rightarrow 3^n+4$ không thể là số chính phương (do 1 scp chia 8 chỉ có thể có dư 0,1,4 và chia 4 chỉ có dư 0,1).
4,
Gọi ƯCLN của ( 5n+7, 7n+10) = d
Ta có:
5n+7 ⋮ d
7n+10 ⋮ d
=> 7.(5n+7) ⋮ d
5.(7n+10) ⋮ d
=> 35n + 49 ⋮ d
35n + 50 ⋮ d
=> 35n + 50 - (35n + 49) ⋮ d
=> 1 ⋮ d
=> d=1
Vậy phân số 5n+7/ 7n+10 là phân số tối giản (đpcm)
Với n \(\ge\) 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33
Còn 5!; 6!; …; n! đều tận cùng bởi 0
Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3
Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)
Với n $\ge$≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33
Còn 5!; 6!; …; n! đều tận cùng bởi 0
Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3
Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)
mày chả vào đc