Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a 0 → là vecto đơn vị cùng hướng với vecto a →
ta có
Gọi O A 0 → = a 0 → và các điểm A 1 , A 2 , A 3 theo thứ tự là hình chiếu vuông góc của điểm A 0 trên các trục Ox, Oy, Oz.
Khi đó ta có:
Vì
Ta có:
ta suy ra:
hay
Vì O A 0 → = a 0 → mà | a 0 → | = 1 nên ta có: cos 2 α + cos 2 β + cos 2 γ = 1
Muốn chứng tỏ rằng ba vecto u → , v → , w → đồng phẳng ta cần tìm hai số thực p và q sao cho w → = p u → + q v →
Giả sử có w → = p u → + q v →
2 c → – 3 a → = p( a → – 2 b → ) + q(3 b → − c → )
⇔ (3 + p) a → + (3q − 2p) b → − (q + 2) c → = 0 → (1)
Vì ba vecto lấy tùy ý a → , b → , c → nên đẳng thức (1) xảy ra khi và chỉ khi:
Như vậy ta có: w → = −3 u → − 2 v → nên ba vecto u → , v → , w → đồng phẳng.
đề phải cho 1 vecto là cchieeuf cao thì ms tính đl chứ
vd như OA', OB', OC' OD',.. j đấy chứ b
a d → = (2;4;1); a d ' → = (1;-1;2) là hai vecto không tỉ lệ nên hai veco đó không cùng phương
Ta biết rằng a → và b → cùng phương khi và chỉ khi a → = k b → với k là một số thực. Theo giả thiết ta có: b → = ( x 0 ; y 0 ; z 0 ) với x 0 = 2. Ta suy ra k = 1/2 nghĩa là l = x 0 /2
Do đó: −3 = y 0 /2 nên y 0 = -6
4 = z 0 /2 nên z 0 = 8
Vậy ta có b → = (2; −6; 8)