Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)
Vậy S chia hết cho 39
7) Bạn xem lại đề. Phải chia hết cho 26 chứ ???
8) Đặt A = 2 + 22 + 23 + ... + 2100
Nhóm 2 số lại:
A= 2(1+2)+23(1+2)+25(1+2)+...+299(1+2)=2.3+23.3+25.3+...+299.3=3(2+23+25+...+299) chia hết cho 3
Tương tự nhóm 4 số sẽ được A chia hết cho 5.
A chia hết cho 3 và 5 nên A chia hết cho 15
A chia hết cho 2 sẵn rồi
CM A chia hết cho 30:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)
Gợi ý;
B chia hết cho 5 sắn rồi
chia hết cho 6 nhóm 2 số vào
Chi hết cho 31 nhóm 3 số vào
A = 75 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25
A = 25 . 3 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25
A = 25 . [ 4 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25
A = 25 . [ ( 41994 + 41993 + ... + 43 + 42 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25
A = 25 . ( 41994 - 1 ) + 25
A = 25 . ( 41994 - 1 + 1 )
A = 25 . 41994
A = 25 . 4 . 41993
A = 100 . 41993 \(⋮\)100
2.
a) gọi 3 số nguyên liên tiếp là a , a + 1 , a + 2
Theo bài ra : a + ( a + 1 ) + ( a + 2 ) = ( a + a + a ) + ( 1 + 2 ) = 3a + 3 = 3 . ( a + 1 ) \(⋮\)3
b) gọi 5 số nguyên liên tiếp là b, b + 1 , b + 2 , b + 3 , b + 4
Theo bài ra : b + ( b + 1 ) + ( b + 2 ) + ( b + 3 ) + ( b + 4 )
= ( b + b + b + b + b ) + ( 1 + 2 + 3 + 4 )
= 5b + 10
= 5 . ( b + 2 ) \(⋮\)5
3.
Ta có : \(\frac{10^{94}+2}{3}=\frac{10...0+2}{3}=\frac{100...002}{3}\text{ }⋮\text{ }3\)là số nguyên
\(\frac{10^{94}+8}{9}=\frac{100...00+8}{9}=\frac{100...008}{9}\text{ }⋮\text{ }9\)là số nguyên
\(S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=3.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=3.\left(1+3+9+27\right)+...+3^{97}.\left(1+3+9+27\right)\)
\(=3.40+...+3^{97}.40\)
\(=40.\left(3+...+3^{97}\right)\)
\(=5.8.\left(3+...+3^{97}\right)\text{chia hết cho 5}\)
=> S chia hết cho 5 =>đpcm.
S=3+3^2+3^3+....+3^100
S=(3+3^2+3^3+3^4)+....+(3^97+3^98+3^99+3^100)
S=1(3+3^2+3^3+3^4)+...+3^96.(3+3^2+3^3+3^4)
S=1.120+...+3^96.120
S=120(1+...+2^96)
S=5.24(1+...+2^96) chia hết cho 5