Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta gọi \(y=x-1,z=x+1\)
\(x^3+y^3+z^3\)
\(=x^3+\left(x-1\right)^3+\left(x+1\right)^3\)
\(=3x^3+6x\)
\(=3\left(x^3-x\right)+9x\)
\(=3x\left(x^2-1\right)+9x\)
\(=3x\left(x-1\right)\left(x+1\right)+9x⋮9\)
ta có: \(a^3+b^3+c^3-\left(a+b+c\right)=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right).\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\) (*)
mà \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> \(a\left(a-1\right)\left(a+1\right)⋮6\)
tương tự : \(b\left(b-1\right)\left(b+1\right)⋮6\)
\(c\left(c-1\right)\left(c+1\right)⋮6\)
=> (*) chia hếtcho 6
\(\Leftrightarrow a^3+b^3+c^3-\left(a+b+c\right)\) chia hết cho 6
mà theo bài ra ta có: \(a+b+c⋮6\)
nên \(a^3+b^3+c^3⋮6\) => đpcm
Gọi 3 số nguyên liên tiếp là: a-1, a, a+1
Giả sử b3= (a - 1)2+a2+(a + 1)2
= 3a2+2 => chia 3 dư 2
=> b chia 3 dư 2 => b=3k+2
=> (3k + 2)3 = 3a2 + 2
=>27k^3+54k^2+36k+8=3a^2+2
=>a2 = 9k(k+1)2+(3k+2)
NX: ta có vế trái là một số chia 3 dư 2
Mà vế phải là một số chính phương, nên chia 3 chỉ có 2 khả năng dư 1 hoăc dư 0=> vô lý
vậy ta có điều cần phải C/m.
vì tổng là bình phương của 1 số
nên có dạng p^3 = p.p.p chia hết cho 7
(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a
= 3a(a^2 + 2) = 3a(a^2 - 1) + 9a
= 3(a - 1)a(a + 1) + 9a
vì tích của 3 số tự nhiên liên tiếp chia hết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
==>3(a - 1)a(a + 1) + 9a (đpcm)
Cho 1 đúntg nha