K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 6 2020

\(A+B+C=180^0\Rightarrow\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^0\Rightarrow\frac{A}{2}+\frac{B}{2}=90^0-\frac{C}{2}\)

\(\Rightarrow tan\left(\frac{A}{2}+\frac{B}{2}\right)=tan\left(90^0-\frac{C}{2}\right)\)

\(\Leftrightarrow\frac{tan\frac{A}{2}+tan\frac{B}{2}}{1-tan\frac{A}{2}.tan\frac{B}{2}}=cot\frac{C}{2}=\frac{1}{tan\frac{C}{2}}\)

\(\Leftrightarrow tan\frac{C}{2}\left(tan\frac{A}{2}+tan\frac{B}{2}\right)=1-tan\frac{A}{2}.tan\frac{B}{2}\)

\(\Leftrightarrow tan\frac{A}{2}tan\frac{C}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{A}{2}.tan\frac{B}{2}=1\)

b/\(A+B+C=180^0\Rightarrow A+B=180^0-C\)

\(\Rightarrow cot\left(A+B\right)=cot\left(180^0-C\right)\)

\(\Leftrightarrow\frac{cotA.cotB-1}{cotA+cotB}=-cotC\)

\(\Leftrightarrow cotA.cotB-1=-cotA.cotC-cotB.cotC\)

\(\Leftrightarrow cotA.cotB+cotB.cotC+cotA.cotC=1\)

NV
20 tháng 5 2020

a/ \(\frac{A}{2}+\left(\frac{B}{2}+\frac{C}{2}\right)=90^0\)

\(\Rightarrow sin\frac{A}{2}=cos\left(\frac{B}{2}+\frac{C}{2}\right)=cos\frac{B}{2}cos\frac{C}{2}-sin\frac{B}{2}.sin\frac{C}{2}\)

b/ \(\frac{tan^2A-tan^2B}{1-tan^2A.tan^2B}=\frac{\left(tanA-tanB\right)}{\left(1+tanA.tanB\right)}.\frac{\left(tanA+tanB\right)}{\left(1-tanA.tanB\right)}=tan\left(A-B\right).tan\left(A+B\right)\)

\(=tan\left(A-B\right).tan\left(180^0-C\right)=-tan\left(A-B\right).tanC\)

c/

\(A+B+C=180^0\Rightarrow cot\left(A+B\right)=-cotC\)

\(\Leftrightarrow\frac{cotA.cotB-1}{cotA+cotB}=-cotC\)

\(\Leftrightarrow cotA.cotB-1=-cotA.cotC-cotB.cotC\)

\(\Leftrightarrow cotA.cotB+cotB.cotC+cotA.cotC=1\)

26 tháng 8 2021

Tại sao lại suy đc Tại sao lại suy đc c


⇔cotA.cotB−1cotA+cotB=−cotC

⇔cotA.cotB−1=−cotA.cotC−cotB.cotC ạ⇔cotA.cotB−1=−cotA.cotC−cotB.cotC


⇔cotA.cotB+cotB.cotC+cotA

NV
17 tháng 6 2020

f/

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)

\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=4sinC.sinA.sinB\)

g/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cosC.cos\left(A-B\right)+cos^2C\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=1-2cosC.cosA.cosB\)

NV
17 tháng 6 2020

d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)

e/

\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)

NV
10 tháng 4 2019

\(cos^4a+sin^4a-6sin^2a.cos^2a\)

\(=cos^4a+sin^4a-2sin^2a.cos^2a-4sin^2a.cos^2a\)

\(=\left(cos^2a-sin^2a\right)^2-\left(2sina.cosa\right)^2\)

\(=cos^22a-sin^22a\)

\(=cos4a\)

Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi x 2\pi\) Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết: a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180 b) \(\cos\alpha=\frac{-2}{3}\left(\pi \text{​​}\alpha \frac{3\pi}{2}\right)\) Bài 3) a) Tính các giá trị lượng giác còn lại của góc...
Đọc tiếp

Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi< x< 2\pi\)

Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết:
a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180

b) \(\cos\alpha=\frac{-2}{3}\left(\pi< \text{​​}\alpha< \frac{3\pi}{2}\right)\)

Bài 3) a) Tính các giá trị lượng giác còn lại của góc \(\alpha\), biết sin\(\alpha\) =\(\frac{1}{5}\) và tan\(\alpha\)+cot\(\alpha\) < 0
b) Cho \(3\sin^4\alpha-cos^4\alpha=\frac{1}{2}\). Tính giá trị biểu thức A=\(2sin^4\alpha-cos\alpha\)
Bài 4) a) Cho \(\cos\alpha=\frac{2}{3}\) Tính giá trị biểu thức: A=\(\frac{tan\alpha+3cot\alpha}{tan\alpha+cot\alpha}\)

b) Cho \(\tan\alpha=3\) Tính giá trị biểu thức: B=\(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)

c) Cho \(\cot\alpha=\sqrt{5}\) Tính giá trị biểu thức: C=\(sin^2\alpha-sin\alpha\cdot cos\alpha+cos^2\alpha\)

Bài 5) Chứng minh các hệ thức sau:

a) \(\frac{1+sin^4\alpha-cos^4\alpha}{1-sin^6\alpha-cos^6\alpha}=\frac{2}{3cos^2\alpha}\)

b) \(\frac{sin^2\alpha\left(1+cos\alpha\right)}{cos^2\alpha\left(1+sin\alpha\right)}=\frac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}\)

c) \(\frac{tan\alpha-tan\beta}{cot\alpha-cot\beta}=tan\alpha\cdot tan\beta\)

d) \(\frac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}=sin^2\alpha\times cos^2\alpha\)

Bài 6) Cho \(cos4\alpha+2=6sin^2\alpha\) với \(\frac{\pi}{2}< \alpha< \pi\). Tính \(\tan2\alpha\)

Bài 7) Cho \(\frac{1}{tan^2\alpha}+\frac{1}{cot^2\alpha}+\frac{1}{sin^2\alpha}+\frac{1}{\cos^2\alpha}=7\). Tính \(\cos4\alpha\)

Bài 8) Chứng minh các biểu thức sau:

a) \(\sin\alpha\left(1+cos2\alpha\right)=sin2\alpha cos\alpha\)

b) \(\frac{1+sin2\alpha-cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\alpha\)

c) \(tan\alpha-\frac{1}{tan\alpha}=-\frac{2}{tan2\alpha}\)

Bài 9) Chứng minh trong mọi tam giác ABC ta đều có:

a) sinA + sinB + sinC = \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

b) \(sin^2A+sin^2B+sin^2C=2\left(1+cosAcosBcosC\right)\)

Bài 10) Chứng minh trong mọi tam giác ABC không vuông ta đều có:

a) \(tanA+tanB+tanC=tanAtanBtanC\)

b) \(cotAcotB+cotBcotC+cotCcotA=1\)

Bài 11) Chứng minh trong mọi tam giác ABC ta đều có:

a) \(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\)

b) \(cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}=cot\frac{A}{2}cot\frac{B}{2}cot\frac{C}{2}\)

1
30 tháng 4 2019

Help help. Tui thật sự ngu lượng giác huhu