Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tương tự ví dụ 11, trang 22, Sách Nâng cao và phát triển Toán 7,
Gỉa sử \(\sqrt{15}\) là số hữu tỉ
=> \(\sqrt{15}=\frac{m}{n}\)( trong đó \(\frac{m}{n}\) là phân số tối giản)=> \(15=\frac{m^2}{n^2}\) hay \(15n^2=m^2\)(1)
Từ (1) => \(m^2\) chia hết cho 15 => m chia hết 15
Đặt m=15k( \(k\in Z\))=> \(m^2=225k^2\)(2)
Tứ (1);(2)=> \(15n^2=225k^2\)=> \(n^2=15k^2\)(3)
Từ (3) => \(n^2\)chia hết cho 15 => n chia hết cho 15
=> \(\frac{m}{n}\)không phải là phân số tối giản trái với giả thiết => \(\sqrt{15}\)không phải là số hửu tỉ
Vậy \(\sqrt{15}\)là số vô tỉ(dpcm)
Giả sử \(\sqrt{7}\) là số hữu tỉ, như vậy có thể viết dưới dạng phân số tối giản \({m\over n}\) tức là \(\sqrt{7} = {m \over n}\) . Suy ra \(7={m^2 \over n^2}\) hay \(7m^2=n^2\) (1)
Đảng thức (1) chứng tỏ \(m^2\vdots7\) mà 7 là số nguyên tố nên \(m\vdots7\) .
Đặt\(m=7k\) (k∈ℤ) ta có \(m^2=49k^2\) (2)
Từ (1) và (2) suy ra \(7n^2=49k^2\) nên \(n^2=7k^2\) (3)
Từ (3) ta lại có \(n^2\vdots7\) và vì 7 là số nguyên tố nên \(n\vdots7\) .
Như vậy m và n cùng chia hết cho 7 nên phân số \({m \over n}\) không tối giản, trái với giả thiết. Vậy \(\sqrt{7}\) không phải là số hữu tỉ, do đó \(\sqrt7\) là số vô tỉ
ví căn bậc hai của 10=3,16227766017 =>căn bậc hai của 10 là số vô tỉ
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
Giả sử \(\sqrt{2018}\) là số hữu tỉ
\(\Rightarrow\) \(\sqrt{2018}\) có thể viết được dưới dạng \(\sqrt{2018}=\frac{m}{n}\left(m;n\in Z;\left(m;n\right)=1;n\ne1\right)\)
\(\Leftrightarrow2018=\frac{m^2}{n^2}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\) Mà \(\left(m;n\right)=1\Rightarrow n=1\) Trái với giả thiết
\(\Rightarrow\) Điều giả sử sai \(\Rightarrow\sqrt{2018}\) là số vô tỉ
Giả sử \(\sqrt{2018}\)không phải là số vô tỷ, khi đó :
\(\sqrt{2018}\)là số hữu tỷ.
\(\Rightarrow\sqrt{2018}=\frac{m}{n}\left(m,n\inℕ^∗\right);\left(m.n\right)=1\)
\(\Rightarrow2018=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\)
\(\Rightarrow2018.n^2=m^2\)
\(\Rightarrow m^2⋮2018\)
\(\Rightarrow m^2⋮2\left(2018⋮2\right)\)
\(\Rightarrow m⋮2\)( Vì 2 là số nguyên tố )
\(\Rightarrow m=2k\left(k\inℕ\right)\)
Do đó : \(2018.n^2=\left(2k\right)^2\)
\(\Rightarrow2018.n^2=4k^2\)
\(\Rightarrow1009.n^2=2k^2\)
\(\Rightarrow1009.n^2⋮2\)
\(\Rightarrow n^2⋮2\)( vì \(\left(1009,2\right)=1\))
\(\Rightarrow n⋮2\)( Vì 2 là số nguyên tố )
Như vậy : \(m⋮2;n⋮2\)trái với \(\left(m,n\right)=1\)
Chứng tỏ điều giả sử ko xảy ra.
Vậy \(\sqrt{2018}\)là số vô tỷ