K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

A=1+919+99199+19991999 = 1+B(3)+B(3)+(1998+1)1999 = 1+B(3)+B(3)+1= B(3)+2= 3k+2 (k thuộc N)

 Mà ko có số chính phương nào chia 3 dư 2

 Nên A ko phải số chính phương

 ( B(3) tức là bội của 3)

14 tháng 9 2015

nguyen truong giang tưởng c là ng` ko xin lk ai ngờ............................................... @@ 

11 tháng 4 2017

Bài 1:

Ta có:

\(9^{10}\div9^9=9\)

\(\left(8^9+7^9+6^9+5^9+...+2^9+1^9\right)\div9^9\)

\(=\left(\dfrac{8}{9}\right)^9+\left(\dfrac{7}{9}\right)^9+\left(\dfrac{6}{9}\right)^9+...+\left(\dfrac{1}{9}\right)^9\)

\(\left(\dfrac{8}{9}\right)^9< 1;\left(\dfrac{7}{9}\right)^9< 1;...;\left(\dfrac{1}{9}\right)^9< 1\)

\(\Rightarrow\left(\dfrac{8}{9}\right)^9+\left(\dfrac{7}{9}\right)^9+...+\left(\dfrac{1}{9}\right)^9< 1+1+...+1=9\)

Vậy \(9^{10}>8^9+7^9+6^9+...+2^9+1^9\)

Bài 2:

\(45=9.5\)

Ta có:

\(\left\{{}\begin{matrix}36⋮9\\9⋮9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}36^{39}⋮9\\9^{10}⋮9\end{matrix}\right.\)\(\Leftrightarrow\left(36^{39}-9^{10}\right)⋮9\)

Lại có:

\(36^{39}=\overline{...6}^{39}=\overline{...6}\Rightarrow36^{39}\) có chữ số tận cùng là \(6\)

Nên chia cho \(5\)\(1\)

\(9^{10}\) cũng có chữ số tận cùng là chữ số \(1\)

Nên chia cho \(5\) cũng dư \(1\)

\(\Rightarrow\left(36^{39}-9^{10}\right)⋮5\)

\(\left(5;9\right)=1\) Nên \(\left(36^{39}-9^{10}\right)⋮45\) (Đpcm)

11 tháng 4 2017

1/Tacó:
89^9​9​​ + 79^9​9​​ + 69^9​9​​ + 59^9​9​​ +......+ 29^9​9​​ + 19^9​9​​ < 89^9​9​​ . 8 = 810^{10}​10​​<910^{10}​10​​
=> 89^9​9​​ + 79^9​9​​ + 69^9​9​​ + 59^9​9​​ +.......+ 29^9​9​​ +19^9​9​​ < 910^{10}​10​​

mk chỉ lm đc bài 1 thôi b ạ b2 mk chịuhiha

I don't now

...............

.................

1 tháng 1 2017

a)3^2+2^2=5^2 => n=2

b) 3^2+2^2=5^2 => n=2

nó là duy nhất

c/m duy nhất: giờ thi trác nhiệm thôi khỏi cần chưng minh

2 tháng 1 2017

sai rồi