K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

Gỉa sử có 1 số chính phương lớn hơn 0 là a, sao cho a2+1=b2

=>a2 và b2 là 2 số liên tiếp.

=>a và b là 2 số liên tiếp.

=>b=a+1

=>a2+1=(a+1)2

=>a2+1=a.(a+1)+a+1

=>a2+1=a2+a+a+1

=>a2+1=(a2+2)+2a

=>0=2a

=>a=0

mà a là số tự nhiên lớn hơn 0=>a khác 0.

=>vô lí

=>Số chính phương lớn hơn 0 cộng thêm 1 thì không phải là số chính phương.

=>ĐPCM

11 tháng 6 2017

câu trả lời là không nhé.. ta có thể chứng minh: 

Giả sử :  A,B là 2 số chính phương... \(\sqrt{A}=a\)

\(\sqrt{B}=b\) c là số không chính phương.

tích  A.B.c.......... \(\sqrt{A.Bc}=a.b\sqrt{c}\)mà c ko là số chính phương suy ra tích 3 số này ko là số chính phương nha

2 tháng 12 2016

Gọi 5 số chính phương liên tiếp là: \(\left(n-2\right)^2;\left(n-1\right)^2;n^2;\left(n+1\right)^2;\left(n+2\right)^2\)

Ta có: \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5n^2+10\)

\(=5\left(n^2+2\right)\)

Để tổng này là số chính phương thì n2 + 2 phải chia hết cho 5 hay n2 + 2 có tận cùng là 0, hoặc 5, hay n2 phải có tận cùng là 3, hoặc 8.

Mà n2 là số chính phương nên không bao giờ có số tận cùng là 3 hoặc 8.

Vậy tổng của 5 số chính phương liên tiếp khác 0 không thể là 1 số chính phương

21 tháng 11 2015

1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

2. 

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)

 

 

                                                                          

21 tháng 11 2015

chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu

VD: 21 không là số chính phương

81=92 là số chính phương

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Lời giải:

$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$

Nếu đây là scp thì $n^2+n+1$ cũng phải là scp

Đặt $n^2+n+1=t^2$ với $t$ tự nhiên 

$\Leftrightarrow 4n^2+4n+4=(2t)^2$

$\Leftrightarrow (2n+1)^2+3=(2t)^2$

$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$

$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$

$\Rightarrow n=0$ (trái giả thiết)

Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$

$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$

Ta có đpcm.

2 tháng 8 2016

Giả sử 2n - 1 là số chính phương => 2n - 1 có dạng 4k hoặc 4k + 1

   +) Nếu 2n - 1 có dạng 4k => 2n có dạng 4k + 3. Vì 2n chia hết cho 2 mà 4k + 3 không chia hết cho 2 => mâu thuẫn => loại

   +) Nếu 2n - 1 có dạng 4k + 1 => 2n có dạng 4k + 2. Vì n là số tự nhiên lớn hơn 1 => 2n luôn chia hết cho 4 mà 4k + 2 không chia hết cho 4 => mâu thuẫn => loại

Vậy 2n - 1 không phải số chính phương

2 tháng 8 2016

Do n là số tự nhiên > 1 => 2n luôn chia hết cho 4

=> 2n - 1 chia 4 dư 3, không là số chính phương

Mk chưa hs chứng minh = phản chứng, đây là cách lp 6, hơi ngắn