Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)
Do đó: n⋮3
Vậy ta có đpcm.
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
⇒2n+1=1(mod8)⇒2n+1=1(mod8)
=> n ⋮⋮ 4
=> n chẵn
=> n+1 cũng là số lẻ
⇒n+1=1(mod8)⇒n+1=1(mod8)
=> n ⋮⋮ 8
Mặt khác :
3n+2=2(mod3)3n+2=2(mod3)
⇒(n+1)+(2n+1)=2(mod3)⇒(n+1)+(2n+1)=2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ
⇒n+1=2n+1=1(mod3)⇒n+1=2n+1=1(mod3)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Bạn tham khảo: !!!
\(A=n^6-n^4+2n^3+2n^2\)
\(=n^2\left(n^4-n^2+2n+2\right)=n^2[n^2\left(n^2-1\right)+2\left(n+1\right)]\)
\(=n^2\left[\left(n+1\right)\left(n^3-n+2\right)\right]=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Xét \(n^2-2n+2\)
Ta có: \(n^2-2n+2=n^2-2n+1+1=\left(n-1\right)^2+1>\left(n-1\right)^2\)
Lại có: \(n^2-2n+2=n^2-\left(2n-2\right)< n^2\)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)
Mà \(\left(n-1\right)^2;n^2\)là hai số chính phương liên tiếp.
\(\Rightarrow n^2-2n+2\)không thể là số chính phương.
\(\Rightarrow n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)không thể là số chính phương.
Vậy A không là số chính phương.
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.
chứng minh bài này bằng phản chứng
phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)
muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
mà với n>1 =>n-1>0=>mâu thuẫn
Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
Muốn pt trên đúng thi cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
Mà với n>1 =>n-1>0=>mâu thuan
Ta có: 2n+1 là số chính phương lẻ (do n tự nhiên)
nên 2n+1 chia 8 dư 1
=> 2n chia hết cho 8 => n chia hết cho 4
=> n+1 lẻ
Mà n+1 là số chính phương
=> n+1 chia 8 dư 1
=> n chia hết cho 8 (1)
Giả sử n không chia hết cho 3
Vì n+1 là số chính phương nên chia 3 dư 1 hoặc chia hết cho 3
=> n chia hết cho 3 hoặc chia 3 dư 2
Mà n không chia hết cho 3
=> n chia 3 dư 2
=> 2n+1 chia 3 dư 2 (vô lý vì số chính phương chia 3 dư 0 hoặc 1)
=> giả sử sai
=> n chia hết cho 3 (2)
Mặt khác : BCNN (8,3)=24 (3)
Từ (1)(2)(3) => n chia hết cho 24
$2n+1$ là số chính phương nên $2n+1 \equiv 0;1(mod3)$
Với $2n+1 \equiv 0 (mod 3)$ mà $n \equiv 0;2 (mod 3)$ do $n+1$ là scp nên ta loại
Với $2n+1 \equiv 1 (mod 3)$ hay $2n \equiv 0(mod3)$
Hay $n \equiv 3$
$2n+1 \equiv 1 (mod 8)$ nên $2n \equiv 0 (mod 8)$
suy ra $n \vdots 4$
$n+1 \equiv 1 (mod8)$
Nên $n \vdots 8$
$n \vdots 3$
$(8;3)=1$ nên $n \vdots 24$ hay $n$ là bội của 24