K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

a, \(\sqrt{21}>\sqrt{20}\)

\(-\sqrt{5}>-\sqrt{6}\)

\(\Rightarrow\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b, \(\sqrt{2}< \sqrt{3}\)

\(\sqrt{8}< \sqrt{9}=3\)

\(\Rightarrow\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)

3 tháng 7 2017

\(\text{c) }\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)

Ta có : \(6< 6.25\Rightarrow\sqrt{6}< \sqrt{6.25}\Rightarrow\sqrt{6}< 2.5\)

\(12< 12.25\Rightarrow\sqrt{12}< \sqrt{12.25}\Rightarrow\sqrt{12}< 3.5\)

\(20< 20.25\Rightarrow\sqrt{20}< \sqrt{20.25}\Rightarrow\sqrt{20}< 4.5\)

\(30< 30.25\Rightarrow\sqrt{30}< \sqrt{30.25}\Rightarrow\sqrt{30}< 5.5\)

\(42< 42.25\Rightarrow\sqrt{42}< \sqrt{42.25}\Rightarrow\sqrt{42}< 6.5\)

\(50< 56.5\Rightarrow\sqrt{50}< \sqrt{56.25}\Rightarrow\sqrt{50}< 7.5\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 2.5+3.5+4.5+5.5+6.5+7.5\)

\(\Rightarrow\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\) \(\left(ĐPCM\right)\)

Vậy \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)

3 tháng 7 2017

\(\)\(\text{a) }\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)

Ta có : \(1< 9\Rightarrow\sqrt{1}< \sqrt{9}\Rightarrow\sqrt{1}< 3\)

\(2< 9\Rightarrow\sqrt{2}< \sqrt{9}\Rightarrow\sqrt{2}< 3\)

\(3< 9\Rightarrow\sqrt{3}< \sqrt{9}\Rightarrow\sqrt{3}< 3\)

\(...\)

\(8< 9\Rightarrow\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3+3+...+3_{\left(\text{8 số hạng 3}\right)}\) \(\) \(\)

\(\) \(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3\cdot8\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\) \(\left(ĐPCM\right)\)

Vậy \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)

\(\text{b) }\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)

Ta có : \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}< \dfrac{1}{\sqrt{100}}\)

\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}< \dfrac{1}{\sqrt{100}}\)

\(...\)

\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}_{\left(\text{100 số hạng}\dfrac{1}{\sqrt{100}}\right)}\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}\cdot100\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{10}{\sqrt{100}}\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\) \(\left(ĐPCM\right)\)

Vậy \(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)

\(\)

5 tháng 11 2017

b, \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

.............................................

Cộng với vế 99 của BĐT trên, ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99.\frac{1}{10}=\frac{99}{10}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}=\frac{1}{10}=\frac{100}{10}=10\)

25 tháng 11 2017

Wrecking Ball đã làm đúng

to ra kết quả giống cậu : Wrecking Ball

là đáp án đúng

tk nha ( chúc bn học gioi )

31 tháng 7 2017

a, Vì 

\(\sqrt{21}-\sqrt{5}=2346507717\)

\(\sqrt{20}-\sqrt{6}=2022646212\)

b, Vì

\(\sqrt{2}+\sqrt{8}=4242640687\)

\(\sqrt{3}+3=4732050808\)

c, Vì

\(\sqrt{5}+\sqrt{10}=5398345638\)

\(5,3=5,3\)

P/s; Ủa tôi tưởng lớp 8 mới học về Căn thức chứ

29 tháng 10 2017

Ta biết căn( \(\sqrt{ }\)) càng lớn thì càng chia ra số nhỏ

=> a >

b<

c>

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Ta có: 1,(81) = 1,8181…

Vì 1,8181… > 1,812 nên -1,8181… < -1,812 hay -1,(81) < -1,812

b) Ta có: \(2\frac{1}{7}\) = 2,142857….

Vì 2,142857….> 2,142 nên \(2\frac{1}{7}\) > 2,142

c) Vì 48,075… < 48,275… nên - 48,075…. > – 48,275…

d) Vì 5 < 8 nên \(\sqrt 5 \) < \(\sqrt 8 \)

a: -1,(81)>-1,812

b: 2+1/7>2,142

c: -48,075...>-48,275...

d: \(\sqrt{5}< \sqrt{8}\)

24 tháng 10 2017

Vì nó không phải là số chính phương=>đpcm.

Tik động viên nhé vui

25 tháng 10 2017

giả sử \(\sqrt{2}\) là số hữu tỉ thì \(\sqrt{2}=\dfrac{a}{b}\left(a,b\in N,\left(a,b\right)=1\right)\)
\(\Rightarrow2=\dfrac{a^2}{b^2}\Rightarrow a^2=2b^2\Rightarrow a^2\)chia hết cho 2\(\Rightarrow\)a chia hết cho 2(2 nguyên tố)
\(\Rightarrow\) a^2 chia hết cho 4\(\Rightarrow\)b^2 chia hết cho 2
mà (a,b)=1 nên khoog có a và b chia hết cho 2 hay \(\sqrt{2}\)không là số hữu tỉ
đúng 100% nhé!!!!!!!!!!!!!!hêhhehe

leuleu