K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

\(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

Xét Hiệu : \(\frac{a}{b}.\frac{a}{c}-\left(\frac{a}{b}+\frac{a}{c}\right)\)

\(=\frac{a^2}{bc}-\frac{ac+ab}{bc}\)

\(=\frac{a^2}{bc}-\frac{a\left(c+b\right)}{bc}\)

\(=\frac{a^2}{bc}-\frac{a^2}{bc}\)  \(\left(c+b=a\right)\)

\(=0\)

\(\Rightarrow\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (ĐPCM)

24 tháng 3 2017

Ta có:

\(VT=\frac{a}{b}.\frac{a}{c}=\frac{aa}{bc}=\frac{a^2}{bc}\)

\(VP=\frac{a}{b}+\frac{a}{c}=\frac{ac}{bc}+\frac{ab}{bc}=\frac{a\left(c+b\right)}{bc}=\frac{aa}{bc}=\frac{a^2}{bc}\)

\(\Rightarrow VT=VP\)

Vậy nếu \(c+b=a\) thì \(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (Đpcm)

23 tháng 2 2018

Ta có : 

\(\frac{a}{b}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

Vậy nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

23 tháng 2 2018

rk phùng minh quân lm đc câu này ko

chứng minh rằng nếu a/b=c/d thì a/b=c/d=a+c/b+d

lm đc ko mk đg gấp

7 tháng 7 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

 Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)

Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)

18 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk

a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)

Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)

Từ (1) và (2) suy ra đều phải chứng minh .

b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)

Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)

Từ (3) và (4) suy ra đều phải chứng minh

17 tháng 12 2019

Ta có : \(\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{ab}{bc}\)(Áp dụng tính chất a = b => a2 = b2 = ab)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{ab}{bc}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(Trừ khử b trên tử và dưới mẫu còn a/c)

4 tháng 3 2018

a)   Ta có:     \(\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a.a}{bc}\)  (thay b+c = a)             (1)

                     \(\frac{a}{b}\times\frac{a}{c}=\frac{a.a}{bc}\)  (2)

Từ (1) và (2) suy ra:        \(\frac{a}{b}+\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\)  (đpcm)

b)     \(c=a+b\)\(\Rightarrow\)\(a=c-b\)

Ta có:   \(\frac{a}{b}-\frac{a}{c}=\frac{ac-ab}{bc}=\frac{a\left(c-b\right)}{bc}=\frac{a^2}{bc}\)  (thay c-b = a)          (3)

              \(\frac{a}{b}\times\frac{a}{c}=\frac{a^2}{bc}\)   (4)

Từ (3) và (4) suy ra:    \(\frac{a}{b}-\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\)   (đpcm)

9 tháng 4 2019

Nhận xét : Nếu hai vế của mỗi đẳng thức < vế phải , vế trái của dấu '='> cùng thêm hay bớt cùng một số thì giá trị hai vế của đặng thức vẫn không thay đổi

Ta Có : \(\frac{a}{b}\)\(\frac{c}{d}\)=> ad = bc ( theo kết quả trên )

Cộng hai vế của đẳng thức trên với ab ta được

                 ad + ab = bn + ab

Áp dụng tính chất phân phối của phép nhân đối vói phép công ta được :

                a( d + b ) = b( a + c ) => \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\)                 ( 1 )

Tương tự : \(\frac{a}{b}\)\(\frac{c}{d}\)=> ad = bc

Cộng hai vế của đẳng thức trên với cd ta được :

  ad + cd = bc + cd

d( a + c ) = c( b +d )

\(\frac{c}{d}\) = \(\frac{a+c}{b+d}\) ( 2 )

Từ (1) và (2) có : \(\frac{a}{b}\)\(\frac{c}{d}\)\(\frac{a+c}{b+d}\)

  

9 tháng 4 2019

Sửa lại đề tí nhá :v 

Chứng minh dãy tỉ số bằng nhau : Nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\).

Giải :

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> \(a=b.k;c=d.k\)

=> \(a+c=b.k+d.k\)

=> \(a+c=k.\left(b+d\right)\)

=> \(\frac{a+c}{b+d}=k\)và \(\frac{a-c}{b-d}=k\left(đpcm\right)\)

14 tháng 7 2016

\(\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)

\(ad+a^2+bd+ab=bc+bd+c^2+cd\)

\(a\left(b+d\right)+a^2=c\left(b+d\right)+c^2\)

\(a+a^2=c+c^2\)

\(a=c\)

14 tháng 2 2018

Ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Suy ra : 

\(\frac{a}{b}=1\Rightarrow a=b\) \(\left(1\right)\)

\(\frac{b}{c}=1\Rightarrow b=c\) \(\left(2\right)\)

\(\frac{c}{a}=1\Rightarrow c=a\) \(\left(3\right)\)

 Từ \(\left(1\right),\left(2\right)\) và \(\left(3\right)\) suy ra : \(a=b=c\)

Vậy nếu \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) thì \(a=b=c\)

Năm mới zui zẻ nhá ^^

26 tháng 4 2017

a,b,c là gì?

27 tháng 4 2017

a,b,c nó ko cho,mình phải tự tìm