Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = 3 2 . 5 2 . 4 3 : 2 3 . 3 2 . 2005 0
= 3 2 . 5 2 . 2 6 : 2 3 . 3 2 . 1
= 3 . 5 2 . 2 3 = 3.25.8 = 600
b, B = 194.12+6.437.2+3.369.4
= 194.12+437.12+369.12
= 12.(194+437+369)
= 12.1000 = 12000
c, C = 5 16 + 16 5 3 17 - 3 10 2 4 - 4 2
= 5 16 + 16 5 3 17 - 3 10 4 2 - 4 2
= 5 16 + 16 5 3 17 - 3 10 . 0 = 0
d, D = 5 2007 - 5 2006 : 5 2005 . 5
= 5 2007 - 5 2006 : 5 2006
= 5 2006 . 5 - 1 : 5 2006 = 4
Ta có :
A = 2 + 22 + ... + 22010
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
A = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )
A = 2 . 3 + 23 . 3 + ... + 22009 . 3
A = 3 . ( 2 + 23 + ... + 22009 ) \(⋮\)3
A = 2 + 22 + ... + 22010
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )
A = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 22008 . ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 22008 . 7
A = 7 . ( 2+ 24 + ... + 22008 ) \(⋮\)7
B = 3 + 32 + ... + 32010
B = ( 3 + 32 ) + ... + ( 32009 + 32010 )
Làm tương tự chứng minh được B \(⋮\)4
B = 3 + 32 + ... + 32010
B = ( 3 + 32 + 33 ) + ... + ( 32008 + 32009 + 32010 )
Làm tương tự chứng minh được B \(⋮\)13
a, \(A=2+2^2+...+2^{2010}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(\Leftrightarrow A=2.3+2^3.3+...+2^{99}.3\)
\(\Leftrightarrow A=3\left(2+2^2+...+2^{99}\right)\)chia hết cho 3
\(B=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+\left(5^6+5^7+5^8\right)\)
\(B=31.1+5^3.31+5^6.31=31.\left(1+5^3+5^6\right)\)
Vậy B chia hết cho 31
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
Đặt ( 6x + 11y) là A
( x + 7y ) là B
Ta có: 5A+B= 5( 6x + 11y ) + ( x + 7y )
= 30x + 55y + x + 7y
= 31x +62y
Do 31 chia hết cho 31 => 31x phải chia hết cho 31
62 chia hết cho 31 => 62y phải chia hết cho 31
=> 31x + 62y chia hết cho 31
hay 5A+B chia hết cho 31
mà A chia hết cho 31 => 5A cũng phải chia hết cho 31
=> B sẽ chia hết cho 31 (đpcm) ahihi nhớ k mk nha
Đặt \(A=6.\left(x+7y\right)-\left(6x+11y\right)\)
\(\Rightarrow A=6x+42y-6x-11y\)\(=y\left(42-11\right)=31y\)
Vì 31y chia hết cho 31 và 6x + 11y chia hết cho 31
Nên 6 (x+7y) chia hết cho 31.
Do ƯCLN(6;31) = 1 nên x+7y chia hết cho 31
Vậy : Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31.
cho mik hỏi điều ngược lại có đúng ko? ai trả lời mik cho, mình đang cần gấp
Ta có :
\(B=5^{2008}+5^{2007}+5^{2006}\)
\(\Rightarrow B=5^{2016}\left(5^2+5+1\right)\)
\(\Rightarrow B=5^{2016}.31\)
=> B chia hết cho 31