K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

a)\(2^{29}+2^{30}=2^{29}\left(1+2\right)=2^{29}.3⋮3\)

Vậy \(2^{29}+2^{30}⋮3\)

17 tháng 10 2017

B nữa bạn c luôn

16 tháng 10 2021

a: \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)

b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)

\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)

\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)

17 tháng 10 2021

undefined

12 tháng 10 2021

\(3^{15}+3^{14}+3^{13}\)

\(=3^{13}\left(3^2+3+1\right)=3^{13}\cdot13⋮13\)

12 tháng 10 2021

\(=3^{13}\left(3^2+3+1\right)=3^{13}\cdot13⋮13\)

21 tháng 8 2021

b) A=2+22+23+...+220

A=(2+22)+(23+24)+...+(219+220)

A=3.2+3.23+...+3.219

A=3.(2+23+25+...+219)

⇒A⋮3

phần c) làm tương tự

21 tháng 8 2021

Câu a thì sao ạ

18 tháng 9 2023

\(a,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)

\(=5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)\)

Ta thấy: \(5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)⋮5\)

nên \(C⋮5\)

\(b,C=5+5^2+5^3+5^4\cdot\cdot\cdot+5^{20}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdot\cdot\cdot+\left(5^{19}+5^{20}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdot\cdot\cdot+5^{19}\left(1+5\right)\)

\(=5\cdot6+5^3\cdot6+\cdot\cdot\cdot+5^{19}\cdot6\)

\(=6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)\)

Ta thấy: \(6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)⋮6\)

nên \(C⋮6\)

\(c,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)

\(=\left(5+5^3\right)+\left(5^2+5^4\right)+\cdot\cdot\cdot+\left(5^{17}+5^{19}\right)+\left(5^{18}+5^{20}\right)\)

\(=5\left(1+5^2\right)+5^2\left(1+5^2\right)+\cdot\cdot\cdot+5^{17}\cdot\left(1+5^2\right)+5^{18}\left(1+5^2\right)\)

\(=5\cdot26+5^2\cdot26+\cdot\cdot\cdot+5^{17}\cdot26+5^{18}\cdot26\)

\(=26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)\)

Ta thấy: \(26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)⋮13\)

nên \(C⋮13\)

#\(Toru\)

18 tháng 9 2023
a, ta có
C = 5 + 5^2 + 5^3 + 5^4 + ... + 5^20
=> C = 5 . ( 1 + 5 + 5^2 + 5^3 + ... + 5^19 )
=> C chia hết cho 5
b,
C = 5 + 5^2 + 5^3 + 5^4 + ... + 5^20
=> C = 5 . ( 1 + 5 ) + 5^3 . ( 1 + 5 ) + ... + 5^19 . ( 1 + 5 )
=> C = 5 . 6 + 5^3 . 6 + ... + 5^19 . 6
=> C = 6 . ( 5 + 5^3 + ... + 5^19 )
=> C chia hết cho 6
c,
C = 5 + 5^2 + 5^3 + ... + 5^20
=> C = (5 + 5^2 + 5^3 + 5^4 ) + ... + (5^17 + 5^18 + 5^19 + 5^20 )
=> C = 5 . ( 1 + 5 + 5^2 + 5^3 ) + ... + 5^17 . ( 1+ 5 + 5^2 +5^3)
=> C = 5 . 156 + 5^5 . 156 + ...+ 5^17 . 156
=> C = 5 . 12 . 13 + 5^5 . 12 . 13 + ... + 5^17 . 12 . 13
=> C = 13 . ( 5 . 12 + 5^5 . 12 + ... + 5^17 . 12 )
=> C chia hết cho 13bucminh
19 tháng 2 2022

a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)

b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)

a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)

b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)

1 tháng 9 2021

,!,!a,a,a,a

a: Ta có: \(A=2+2^2+2^3+...+2^{20}\)

\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)

b: Ta có: \(A=2+2^2+2^3+...+2^{20}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\)

21 tháng 8 2021

e cảm ơn ạ

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

Lời giải:
a.

\(\overline{abc}=100a+10b+c\)

Vì $a,b$ là số chẵn nên $100a\vdots 4; 10b\vdots b$

Mà $\overline{abc}=100a+10b+c\vdots 4$

$\Rightarrow c\vdots 4$

(đpcm)

b.

$\overline{bac}=100b+10a+c$

$=100a+10b+c+(90b-90a)=\overline{abc}+90(b-a)$

Vì $b,a$ chẵn nên $b-a$ chẵn

$\Rightarrow 90(b-a)=45.2(b-a)\vdots 4$

Kết hợp với $\overline{abc}\vdots 4$

Do đó: $\overline{bac}=\overline{abc}+90(b-a)\vdots 4$

(đpcm)

 

24 tháng 8 2021

Em cảm ơn ạ